| Citation: | Kodanova S. K., Ramazanov T. S., Issanova M. K.. Impact of local field correction on transport and dynamic properties of warm dense matter[J]. Matter and Radiation at Extremes, 2025, 10(3): 037601. doi: 10.1063/5.0243102 |
| [1] |
T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman et al., “Observing the onset of pressure-driven k-shell delocalization,” Nature 618, 270 (2023).10.1038/s41586-023-05996-8
|
| [2] |
U. Zastrau, K. Appel, C. Baehtz, O. Baehr, L. Batchelor et al., “The high energy density scientific instrument at the European XFEL,” J. Synchrotron Radiat. 28, 1393–1416 (2021).10.1107/s1600577521007335
|
| [3] |
K. Falk, S. Regan, J. Vorberger, M. Barrios, T. Boehly et al., “Self-consistent measurement of the equation of state of liquid deuterium,” High Energy Density Phys. 8, 76–80 (2012).10.1016/j.hedp.2011.11.006
|
| [4] |
D. Saumon and T. Guillot, “Shock compression of deuterium and the interiors of jupiter and saturn,” Astrophys. J. 609, 1170–1180 (2004).10.1086/421257
|
| [5] |
T. Guillot and A. Showman, “Evolution of ‘51 Pegasus b-like’ planets,” Astron. Astrophys. 385, 156–165 (2002).10.1051/0004-6361:20011624
|
| [6] |
W. Nellis, “Dynamic compression of materials: Metallization of fluid hydrogen at high pressures,” Rep. Prog. Phys. 69, 1479 (2006).10.1088/0034-4885/69/5/r05
|
| [7] |
A. Burrows, W. Hubbard, J. Lunine, and J. Liebert, “The theory of brown dwarfs and extrasolar giant planets,” Rev. Mod. Phys. 73, 719 (2001).10.1103/revmodphys.73.719
|
| [8] |
N. Tahir, D. Hoffmann, and A. Kozureva, “Metallization of hydrogen using heavy ion implosion of multilayered cylindrical targets,” Phys. Rev. E. 63, 016402 (2000).10.1103/PhysRevE.63.016402
|
| [9] |
Z. Moldabekov, T. D. Gawne, S. Schwalbe, T. R. Preston, J. Vorberger et al., “Ultrafast heating-induced suppression of d-band dominance in the electronic excitation spectrum of cuprum,” ACS Omega 9, 25239–25250 (2024).10.1021/acsomega.4c02920
|
| [10] |
Z. A. Moldabekov, T. D. Gawne, S. Schwalbe, T. R. Preston, J. Vorberger et al., “Excitation signatures of isochorically heated electrons in solids at finite wave number explored from first principles,” Phys. Rev. Res. 6, 023219 (2024).10.1103/physrevresearch.6.023219
|
| [11] |
I. Baraffe, G. Chabrier, and T. Barman, “The physical properties of extra-solar planets,” Rep. Prog. Phys. 73, 016901 (2010).10.1088/0034-4885/73/1/016901
|
| [12] |
T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. Preston et al., “Accurate temperature diagnostics for matter under extreme conditions,” Nat. Commun. 13, 7911 (2022).10.1038/s41467-022-35578-7
|
| [13] |
E. Moses, R. Boyd, B. Remington, C. Keane, and R. Al-Ayat, “The national ignition facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).10.1063/1.3116505
|
| [14] |
L. B. Da Silva, P. Celliers, G. Collins, K. Budil, N. Holmes et al., “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78(3), 483–486 (1997).10.1103/physrevlett.78.483
|
| [15] |
D. Kraus, A. Ravasio, M. Gauthier, D. O. Gericke, J. Vorberger et al., “Nanosecond formation of diamond and lonsdaleite by shock compression of graphite,” Nat. Commun. 7, 10970 (2016).10.1038/ncomms10970
|
| [16] |
D. Kraus, J. Vorberger, A. Pak, N. Hartley, L. Fletcher et al., “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606–611 (2017).10.1038/s41550-017-0219-9
|
| [17] |
B. Cho, T. Ogitsu, K. Engelhorn, A. Correa, Y. Ping et al., “Measurement of electron-ion relaxation in warm dense copper,” Sci. Rep. 6, 18843 (2016).10.1038/srep18843
|
| [18] |
J. Daligault and J. Simoni, “Theory of the electron-ion temperature relaxation rate spanning the hot solid metals and plasma phases,” Phys. Rev. E. 100, 043201 (2019).10.1103/physreve.100.043201
|
| [19] |
J. Simoni and J. Daligault, “First-principles determination of electron-ion couplings in the warm dense matter regime,” Phys. Rev. Lett. 122, 205001 (2019).10.1103/physrevlett.122.205001
|
| [20] |
J. Vorberger, D. Gericke, T. Bornath, and M. Schlanges, “Energy relaxation in dense, strongly coupled two-temperature plasmas,” Phys. Rev. E. 81, 046404 (2010).10.1103/physreve.81.046404
|
| [21] |
J. Vorberger and D. Gericke, “Comparison of electron–ion energy transfer in dense plasmas obtained from numerical simulations and quantum kinetic theory,” High Energy Density Phys. 10, 1–8 (2014).10.1016/j.hedp.2013.10.006
|
| [22] |
M. Dharma-wardana, “Quantum corrections and bound-state effects in the energy relaxation of hot dense hydrogen,” Phys. Rev. Lett. 101, 035002 (2008).10.1103/physrevlett.101.035002
|
| [23] |
J. Vorberger and D. Gericke, “Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas,” Phys. Plasmas 16, 082702 (2009).10.1063/1.3197136
|
| [24] |
D. Gericke, M. Murillo, and M. Schlanges, “Dense plasma temperature equilibration in the binary collision approximation,” Phys. Rev. E. 65, 036418 (2002).10.1103/physreve.65.036418
|
| [25] |
J. Glosli, F. Graziani, R. More, M. Murillo, F. Streitz et al., “Molecular dynamics simulations of temperature equilibration in dense hydrogen,” Phys. Rev. E 78, 025401 (2008).10.1103/physreve.78.025401
|
| [26] |
G. Dimonte and J. Daligault, “Molecular-dynamics simulations of electron-ion temperature relaxation in a classical Coulomb plasma,” Phys. Rev. Lett. 101, 135001 (2008).10.1103/physrevlett.101.135001
|
| [27] |
C. Jones and M. Murillo, “Analysis of semi-classical potentials for molecular dynamics and Monte Carlo simulations of warm dense matter,” High Energy Density Phys. 3, 379–394 (2007).10.1016/j.hedp.2007.02.038
|
| [28] |
M. Murillo and M. W. C. Dharma-wardana, “Temperature relaxation in hot dense hydrogen,” Phys. Rev. Lett. 100, 205005 (2008).10.1103/physrevlett.100.205005
|
| [29] |
R. T. Sprenkle, L. Silvestri, M. Murillo, and S. Bergeson, “Temperature relaxation in strongly-coupled binary ionic mixtures,” Nat. Commun. 13, 15 (2022).10.1038/s41467-021-27696-5
|
| [30] |
K. Burke, “Perspective on density functional theory,” J. Chem. Phys. 136, 150901 (2012).10.1063/1.4704546
|
| [31] |
G. Galli, R. Hood, A. Hazi, and F. Gygi, “Ab initio simulations of compressed liquid deuterium,” Phys. Rev. B 61, 909 (2000).10.1103/physrevb.61.909
|
| [32] |
L. Collins, S. Bickham, J. Kress, S. Mazevet, T. J. Lenosky et al., “Dynamical and optical properties of warm dense hydrogen,” Phys. Rev. B 63, 184110 (2001).10.1103/physrevb.63.184110
|
| [33] |
Z. Moldabekov, J. Vorberger, and T. Dornheim, “From density response to energy functionals and back: An ab initio perspective on matter under extreme conditions,” Prog. Part. Nucl. Phys. 140, 104144 (2025).10.1016/j.ppnp.2024.104144
|
| [34] |
C. Bowen, G. Sugiyama, and B. J. Alder, “Static dielectric response of the electron gas,” Phys. Rev. B 50, 14838 (1994).10.1103/physrevb.50.14838
|
| [35] |
S. Moroni, D. Ceperley, and G. Senatore, “Static response from quantum Monte Carlo calculations,” Phys. Rev. Lett. 69, 1837 (1992).10.1103/physrevlett.69.1837
|
| [36] |
D. Ceperley and M. Dewing, “The penalty method for random walks with uncertain energies,” J. Chem. Phys. 110, 9812 (1999).10.1063/1.478034
|
| [37] |
J. Perdew and Y. Wang, “Pair-distribution function and its coupling-constant average for the spin-polarized electron gas,” Phys. Rev. B 46, 12947 (1992).10.1103/physrevb.46.12947
|
| [38] |
S. Groth, T. Dornheim, T. Sjostrom, F. Malone, W. Foulkes et al., “Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions,” Phys. Rev. Lett. 119, 135001 (2017).10.1103/physrevlett.119.135001
|
| [39] |
S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University, Cambridge, England, 1970).
|
| [40] |
L. Spitzer and A. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 997 (1953).10.1103/PhysRev.89.977
|
| [41] |
Z. Moldabekov, T. Dornheim, and M. Bonitz, “Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions,” Contrib. Plasma Phys. 62, e202000176 (2022).10.1002/ctpp.202000176
|
| [42] |
Z. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, and T. Ramazanov, “Statically screened ion potential and Bohm potential in a quantum plasma,” Phys. Plasmas 22, 102104 (2015).10.1063/1.4932051
|
| [43] |
Z. Moldabekov, S. Groth, T. Dornheim, M. Bonitz, and T. Ramazanov, “Ion potential in non-ideal dense quantum plasmas,” Contrib. Plasma Phys. 57, 532–538 (2017).10.1002/ctpp.201700109
|
| [44] |
L. Stanton and M. S. Murillo, “Ionic transport in high-energy-density matter,” Phys. Rev. E 93, 043203 (2016).10.1103/physreve.93.043203
|
| [45] |
T. Ramazanov, S. Kodanova, M. Nurusheva, and M. Issanova, “Ion core effect on scattering processes in dense plasmas,” Phys. Plasmas 28(9), 092702 (2021).10.1063/5.0059297
|
| [46] |
T. Ramazanov, M. K. Issanova, Y. K. Aldakul, and S. Kodanova, “Ion core effect on transport characteristics in warm dense matter,” Phys. Plasmas 29(11), 112706 (2022).10.1063/5.0102528
|
| [47] |
T. Ramazanov, S. Kodanova, M. Issanova, and B. Kenzhegulov, “Influence of the ion core on relaxation processes in dense plasmas,” Contrib. Plasma Phys. 64, e202300127 (2024).10.1002/ctpp.202300127
|
| [48] |
M. Gabdullin, S. Kodanova, T. Ramazanov, M. Issanova, and T. Ismagambetova, “Thermodynamic and dynamical properties of dense ICF plasma,” Nukleonika 61, 125 (2016).10.1515/nuka-2016-0022
|
| [49] |
S. Kodanova, T. Ramazanov, A. Khikmetov, and M. Issanova, “Dynamical properties of inertial confinement fusion plasmas,” Contrib. Plasma Phys. 58, 946 (2018).10.1002/ctpp.201700187
|
| [50] |
T. Ramazanov, S. Kodanova, Z. Moldabekov, and M. Issanova, “Dynamical properties of non-ideal plasma on the basis of effective potentials,” Phys. Plasmas 20, 112702 (2013).10.1063/1.4829042
|
| [51] |
S. Kodanova, T. Ramazanov, M. Issanova, G. Nigmetova, and Z. Moldabekov, “Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials,” Contrib. Plasma Phys. 55, 271 (2015).10.1002/ctpp.201400094
|
| [52] |
T. Ramazanov, Z. Moldabekov, and M. Gabdullin, “Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma,” Phys. Rev. E 92, 023104 (2015).10.1103/physreve.92.023104
|
| [53] |
M. Issanova, S. Kodanova, T. Ramazanov, and D. Hoffmann, “Classical scattering and stopping power in dense plasmas: The effect of diffraction and dynamic screening,” Contrib. Plasma Phys. 56, 425–431 (2016).10.1002/ctpp.201500134
|
| [54] |
S. Kodanova, M. Issanova, S. Amirov, T. Ramazanov, A. Tikhonov et al., “Relaxation of non-isothermal hot dense plasma parameters,” Matter Radiat. Extremes 3, 40–49 (2018).10.1016/j.mre.2017.07.005
|
| [55] |
T. Ramazanov, Z. Moldabekov, and M. Gabdullin, “Impact of single particle oscillations on screening of a test charge,” Eur. Phys. J. D 72, 106–108 (2018).10.1140/epjd/e2018-90006-2
|
| [56] |
G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee, and O. L. Landen, “Theoretical model of x-ray scattering as a dense matter probe,” Phys. Rev. E 67, 026412 (2003).10.1103/physreve.67.026412
|
| [57] |
B. Das and A. Ghoshal, “Stability of the negative ion of hydrogen in nonideal classical plasmas,” Phys. Rev. E 101, 043202 (2020).10.1103/physreve.101.043202
|
| [58] |
Z.-B. Chen, “Study of atomic spectroscopy and electron collision process in non-ideal classical plasmas,” Phys. Plasmas 30, 052105 (2023).10.1063/5.0147053
|
| [59] |
T. Ramazanov, K. Galiyev, K. Dzhumagulova, G. Röpke, and R. Redmer, “Transport properties of partially ionized hydrogen plasma,” J. Phys. A: Math. Gen. 36, 6173 (2003).10.1088/0305-4470/36/22/345
|
| [60] |
Y. Arkhipov, F. Baimbetov, A. Davletov, and T. Ramazanov, “Equilibrium properties of H-plasma,” Contrib. Plasma Phys. 39(6), 495–499 (1999).10.1002/ctpp.2150390603
|
| [61] |
Y. Arkhipov, F. Baimbetov, A. Davletov, and K. Starikov, “On the electrical conductivity of semiclassical two-component plasmas,” J. Plasma Phys. 68(2), 81–86 (2002).10.1017/s0022377802001770
|
| [62] |
A. Becker, W. Lorenzen, J. Fortney, N. Nettelmann, M. Schöttler et al., “Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of brown dwarfs,” Astrophys. J., Suppl. Ser. 215, 21 (2014).10.1088/0067-0049/215/2/21
|
| [63] |
J. Daligault and S. Gupta, “Electron–ion scattering in dense multi-component plasmas: Application to the outer crust of an accreting neutron star,” Astrophys. J. 703, 994 (2009).10.1088/0004-637x/703/1/994
|
| [64] |
S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109
|
| [65] |
E. Brovman, Y. Kagan, and A. Kholas, “Properties of metallic hydrogen under pressure,” Sov. Phys. JETP 35, 783–792 (1972).
|
| [66] |
B. Holst, M. French, and R. Redmer, “Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen,” Phys. Rev. B 83, 235120 (2011).10.1103/physrevb.83.235120
|
| [67] |
M. French and T. Mattsson, “Thermoelectric transport properties of molybdenum from ab initio simulations,” Phys. Rev. B 90, 165113 (2014).10.1103/physrevb.90.165113
|
| [68] |
M. Desjarlais, C. Scullard, L. Benedict, H. Whitley, and R. Redmer, “Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering,” Phys. Rev. E 95, 033203 (2017).10.1103/physreve.95.033203
|
| [69] |
C. Starrett, “Potential of mean force for electrical conductivity of dense plasmas,” High Energy Density Phys. 25, 8–14 (2017).10.1016/j.hedp.2017.09.003
|
| [70] |
H. Reinholz, R. Redmer, G. Röpke, and A. Wierling, “The long-wavelength limit of the dielectric function for dense plasmas,” Contrib. Plasma Phys. 39(1–2), 77–80 (1999).10.1002/ctpp.2150390119
|
| [71] |
G. Röpke and A. Wierling, “Dielectric function of a two-component plasma including collisions,” Phys. Rev. E 57(6), 7075–7085 (1998).10.1103/physreve.57.7075
|
| [72] |
G. Röpke, R. Redmer, A. Wierling, and H. Reinholz, “Strong collisions and response function for two-component plasmas,” Phys. Plasmas 7, 39–44 (2000).10.1063/1.873780
|
| [73] |
G. Röpke and R. Redmer, “Electrical conductivity of nondegenerate, fully ionized plasmas,” Phys. Rev. A. 39, 907 (1989).10.1103/physreva.39.907
|
| [74] |
S. Ichimaru, S. Mitake, S. Tanaka, and X.-Z. Yan, “Theory of interparticle correlations in dense, high-temperature plasmas. I. General formalism,” Phys. Rev. A. 32, 1768 (1985).10.1103/physreva.32.1768
|
| [75] |
S. Tanaka, X.-Z. Yan, and S. Ichimaru, “Equation of state and conductivities of dense hydrogen plasmas near the metal-insulator transition,” Phys. Rev. A. 41, 5616 (1990).10.1103/physreva.41.5616
|
| [76] |
S. Ichimaru and S. Tanaka, “Theory of interparticle correlations in dense, high-temperature plasmas. V. Electric and thermal conductivities,” Phys. Rev. A. 32, 1790 (1985).10.1103/physreva.32.1790
|
| [77] |
Z. Moldabekov, M. Bonitz, and T. Ramazanov, “Theoretical foundations of quantum hydrodynamics for plasmas,” Phys. Plasmas 25, 031903 (2018).10.1063/1.5003910
|
| [78] |
Z. A. Moldabekov, S. Groth, T. Dornheim, H. Kählert, M. Bonitz et al., “Structural characteristics of strongly coupled ions in a dense quantum plasma,” Phys. Rev. E 98, 023207 (2018).10.1103/physreve.98.023207
|
| [79] |
M. Bonitz, T. Dornheim, Z. Moldabekov, S. Zhang, P. Hamann et al., “Ab initio simulation of warm dense matter,” Phys. Plasmas 27, 042710 (2020).10.1063/1.5143225
|
| [80] |
T. Dornheim, Z. Moldabekov, and P. Tolias, “Analytical representation of the local field correction of the uniform electron gas within the effective static approximation,” Phys. Rev. B 103, 165102 (2021).10.1103/physrevb.103.165102
|
| [81] |
D. V. Sivukhin, “Coulomb collisions in a fully ionized plasma,” in Reviews of Plasma Physics (Consultants Bureau, New York, 1966), Vol. 4.
|
| [82] |
M. Honda, “Coulomb logarithm formulae for collisions between species with different temperatures,” Jpn. J. Appl. Phys. 52, 108002 (2013).10.7567/jjap.52.108002
|
| [83] |
N. R. Arista and W. Brandt, “Dielectric response of quantum plasmas in thermal equilibrium,” Phys. Rev. A. 29, 1471–1480 (1984).10.1103/physreva.29.1471
|
| [84] |
T. Ramazanov, S. Amirov, and Z. Moldabekov, “Impact of quantum non‐locality and electronic non‐ideality on e–He scattering in a dense plasma,” Contrib. Plasma Phys. 58, 155 (2018).10.1002/ctpp.201700140
|
| [85] |
Z. Moldabekov, J. Vorberger, and T. Dornheim, “Density functional theory perspective on the nonlinear response of correlated electrons across temperature regimes,” J. Chem. Theor. Comput. 18, 2900–2912 (2022).10.1021/acs.jctc.2c00012
|
| [86] |
Z. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and T. Dornheim, “Ab initio static exchange–correlation kernel across Jacob’s ladder without functional derivatives,” J. Chem. Theor. Comput. 19, 1286–1299 (2023).10.1021/acs.jctc.2c01180
|
| [87] |
Z. A. Moldabekov, H. Kählert, T. Dornheim, S. Groth, M. Bonitz et al., “Dynamical structure factor of strongly coupled ions in a dense quantum plasma,” Phys. Rev. E 99, 053203 (2019).10.1103/physreve.99.053203
|
| [88] |
S. Rightley and S. Baalrud, “Kinetic model for electron-ion transport in warm dense matter,” Phys. Rev. E 103, 063206 (2021).10.1103/physreve.103.063206
|
| [89] |
D. Melrose and A. Mushtaq, “Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil,” Phys. Rev. E 82, 056402 (2010).10.1103/physreve.82.056402
|
| [90] |
N. Mott and H. S. W. Massey, Theory of Atomic Collisions (Clarendon, Oxford, 1956).
|
| [91] |
F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New York, 1967).
|
| [92] |
V. Babikov, “The phase-function method in quantum mechanics,” Sov. Phys. Usp. 10, 271 (1967).10.1070/pu1967v010n03abeh003246
|
| [93] |
V. Babikov, Phase Function Method in Quantum Physics (Nauka, Moscow, 1976).
|
| [94] |
J. P. Hansen and I. R. McDonald, “Microscopic simulation of a strongly coupled hydrogen plasma,” Phys. Rev. A. 23, 2041–2059 (1981).10.1103/physreva.23.2041
|
| [95] |
G. Röpke, “Electrical conductivity of hydrogen plasmas: Low-density benchmarks and virial expansion including e–e collisions,” Phys. Plasmas 31, 042301 (2024).10.1063/5.0197967
|
| [96] |
H. Reinholz, G. Röpke, S. Rosmej, and R. Redmer, “Conductivity of warm dense matter including electron-electron collisions,” Phys. Rev. E 91, 043105 (2015).10.1103/physreve.91.043105
|
| [97] |
A. Y. Potekhin, D. A. Baiko, P. Haensel, and D. G. Yakovlev, “Transport properties of degenerate electrons in neutron star envelopes and white dwarf cores,” Astron. Astrophys. 346, 345–353 (1999); arXiv:astro-ph/9903127.
|
| [98] |
L. Spitzer, Physics of Fully Ionized Gases (Interscience Publishers, New York, 1956).
|
| [99] |
J. Daligault, “On the quantum Landau collision operator and electron collisions in dense plasmas,” Phys. Plasmas 23, 032706 (2016).10.1063/1.4944392
|
| [100] |
J. Daligault, “Collisional transport coefficients of dense high-temperature plasmas within the quantum Landau-Fokker-Planck framework,” Phys. Plasmas 25, 082703 (2018).10.1063/1.5045330
|
| [101] |
N. R. Shaffer and C. E. Starrett, “Model of electron transport in dense plasmas spanning temperature regimes,” Phys. Rev. E 101, 053204 (2020).10.1103/physreve.101.053204
|
| [102] |
Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,” Phys. Fluids 27, 1273–1286 (1984).10.1063/1.864744
|
| [103] |
B. B. L. Witte, P. Sperling, M. French, V. Recoules, S. H. Glenzer, and R. Redmer, “Observations of non-linear plasmon damping in dense plasmas,” Phys. Plasmas 25, 056901 (2018).10.1063/1.5017889
|
| [104] |
M. Bonitz, Quantum Kinetic Theory, 2nd ed. (Springer, 2015).
|