Citation: | Cernaianu M. O., Ghenuche P., Rotaru F., Tudor L., Chalus O., Gheorghiu C., Popescu D. C., Gugiu M., Balascuta S., Magureanu A., Tataru M., Horny V., Corobean B., Dancus I., Alincutei A., Asavei T., Diaconescu B., Dinca L., Dreghici D. B., Ghita D. G., Jalba C., Leca V., Lupu A. M., Nastasa V., Negoita F., Patrascoiu M., Schimbeschi F., Stutman D., Ticos C., Ursescu D., Arefiev A., Tomassini P., Malka V., Gales S., Tanaka K. A., Ur C. A., Doria D.. Commissioning of the 1 PW experimental area at ELI-NP using a short focal parabolic mirror for proton acceleration[J]. Matter and Radiation at Extremes, 2025, 10(2): 027204. doi: 10.1063/5.0241077 |
[1] |
A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/RevModPhys.85.751
|
[2] |
G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309 (2006).10.1103/RevModPhys.78.309
|
[3] |
C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
|
[4] |
H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012).10.1088/0034-4885/75/5/056401
|
[5] |
B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346, 325–328 (2014); https://www.jstor.org/stable/24917377.10.1126/science.1259694
|
[6] |
M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/PhysRevLett.86.436
|
[7] |
M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert et al., “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/PhysRevLett.110.044802
|
[8] |
C. Graeff, L. Volz, and M. Durante, “Emerging technologies for cancer therapy using accelerated particles,” Prog. Part. Nucl. Phys. 131, 104046 (2023).10.1016/j.ppnp.2023.104046
|
[9] |
J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
|
[10] |
K. Markey, P. McKenna, C. M. Brenner, D. C. Carroll, M. M. Günther et al., “Spectral enhancement in the double pulse regime of laser proton acceleration,” Phys. Rev. Lett. 105, 195008 (2010).10.1103/physrevlett.105.195008
|
[11] |
M. King, R. Wilson, E. F. J. Bacon, E. J. Dolier, T. P. Frazer et al., “Perspectives on laser-plasma physics in the relativistic transparency regime,” Eur. Phys. J. A 59, 132 (2023).10.1140/epja/s10050-023-01043-2
|
[12] |
A. Higginson, R. Gray, M. King, R. J. Dance, S. D. R. Williamson et al., “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
|
[13] |
F. Albert, M. E. Couprie, A. Debus, M. C. Downer, J. Faure et al., “2020 roadmap on plasma accelerators,” New J. Phys. 23, 031101 (2021).10.1088/1367-2630/abcc62
|
[14] |
J. Hornung, Y. Zobus, P. Boller, C. Brabetz, U. Eisenbarth et al., “Enhancement of the laser-driven proton source at PHELIX,” High Power Laser Sci. Eng. 8, e24 (2020).10.1017/hpl.2020.23
|
[15] |
I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim et al., “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23, 070701 (2016).10.1063/1.4958654
|
[16] |
T. Ziegler, I. Göthel, S. Assenbaum, C. Bernert, F.-E. Brack et al., “Laser-driven high-energy proton beams from cascaded acceleration regimes,” Nat. Phys. 20, 1211–1216 (2024).10.1038/s41567-024-02505-0
|
[17] |
T. Ziegler, D. Albach, C. Bernert et al., “Proton beam quality enhancement by spectral phase control of a PW-class laser system,” Sci. Rep. 11, 7338 (2021).10.1038/s41598-021-86547-x
|
[18] |
T. Esirkepov, M. Borghesi, S. V. Bulanov, G. A. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92, 175003 (2004).10.1103/PhysRevLett.92.175003
|
[19] |
P. McKenna, D. C. Carroll, O. Lundh, F. Nürnberg, K. Markey et al., “Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets,” Laser Part. Beams 26, 591–596 (2008).10.1017/S0263034608000657
|
[20] |
N. P. Dover, T. Ziegler, S. Assenbaum, C. Bernert, S. Bock et al., “Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities,” Light: Sci. Appl. 12, 71 (2023).10.1038/s41377-023-01083-9
|
[21] |
F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu et al., “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, e43 (2020).10.1017/hpl.2020.41
|
[22] |
C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps et al., “10 PW peak power femtosecond laser pulses at ELI-NP,” High Power Laser Sci. Eng. 10, e21 (2022).10.1017/hpl.2022.11
|
[23] |
K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi et al., “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5, 024402 (2020).10.1063/1.5093535
|
[24] |
S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman et al., “The extreme light infrastructure—nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).10.1088/1361-6633/aacfe8
|
[25] |
H. Kiriyama, Y. Miyasaka, A. Kon, M. Nishiuchi, A. Sagisaka et al., “Laser output performance and temporal quality enhancement at the J-KAREN-P petawatt laser facility,” Photonics 10, 997 (2023).10.3390/photonics10090997
|
[26] |
J. Bromage, C. Dorrer, and R. K. Jungquist, “Temporal contrast degradation at the focus of ultrafast pulses from high-frequency spectral phase modulation,” J. Opt. Soc. Am. B 29, 1125–1135 (2012).10.1364/JOSAB.29.001125
|
[27] |
S. Roeder, Y. Zobus, C. Brabetz, and V. Bagnoud, “How the laser beam size conditions the temporal contrast in pulse stretchers of chirped-pulse amplification lasers,” High Power Laser Sci. Eng. 10, e34 (2022).10.1017/hpl.2022.18
|
[28] |
C. C. Gheorghiu, S. C. Ionescu, P. Ghenuche, M. O. Cernaianu, D. Doria et al., “Structuring free-standing foils for laser-driven particle acceleration experiments,” Front. Phys. 9, 727498 (2021).10.3389/fphy.2021.727498
|
[29] | |
[30] |
P. L. Poole, L. Obst, G. E. Cochran, J. Metzkes, H.-P. Schlenvoigt et al., “Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime,” New J. Phys. 20, 013019 (2018).10.1088/1367-2630/aa9d47
|
[31] |
K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, P. Antici et al., “Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level,” Matter Radiat. Extremes 6(6), 064402 (2021).10.1063/5.0065138
|
[32] |
L. Obst, J. Metzkes-Ng, S. Bock, G. E. Cochran, T. E. Cowan et al., “On-shot characterization of single plasma mirror temporal contrast improvement,” Plasma Phys. Controlled Fusion 60, 054007 (2018).10.1088/1361-6587/aab3bb
|
[33] | |
[34] |
Y. Cai, W. Wang, C. Xia, J. Liu, L. Liu et al., “Time-resolved measurements on reflectivity of an ultrafast laser-induced plasma mirror,” Phys. Plasmas 16, 103104 (2009).10.1063/1.3247865
|
[35] |
M. Zimmer, S. Scheuren, T. Ebert, G. Schaumann, B. Schmitz et al., “Analysis of laser-proton acceleration experiments for development of empirical scaling laws,” Phys. Rev. E 104, 045210 (2021).10.1103/PhysRevE.104.045210
|
[36] |
R. Wilson, M. King, N. M. H. Butler, D. C. Carroll, T. P. Frazer et al., “Influence of spatial-intensity contrast in ultraintense laser–plasma interactions,” Sci. Rep. 12, 1910 (2022).10.1038/s41598-022-05655-4
|
[37] |
J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance et al., “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104, 214101 (2014).10.1063/1.4879641
|
[38] |
J. J. MacFarlane, I. E. Golovkin, and P. R. Woodruff, “HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling,” J. Quant. Spectrosc. Radiat. Transfer 99, 381–397 (2006).10.1016/j.jqsrt.2005.05.031
|
[39] |
S. Palaniyappan, C. Huang, D. C. Gautier, C. E. Hamilton, M. A. Santiago et al., “Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas,” Nat. Commun. 6, 10170 (2015).10.1038/ncomms10170
|
[40] | |
[41] |
D. Batani, R. Jafer, M. Veltcheva, R. Dezulian, O. Lundh et al., “Effects of laser prepulses on laser-induced proton generation,” New J. Phys. 12, 045018 (2010).10.1088/1367-2630/12/4/045018
|
[42] |
L. Yang, L. Huang, S. Assenbaum, T. E. Cowan, I. Goethel et al., “Time-resolved optical shadowgraphy of solid hydrogen jets as a testbed to benchmark particle-in-cell simulations,” Commun. Phys. 6, 368 (2023).10.1038/s42005-023-01473-w
|
[43] |