Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Chen Guo, Zhang Chengfeng, Zhu Yuanqin, Cao Bingqing, Zhang Jie, Wang Xianlong. Realized stable BP-N at ambient pressure by phosphorus doping[J]. Matter and Radiation at Extremes, 2025, 10(1): 015801. doi: 10.1063/5.0239841
Citation: Chen Guo, Zhang Chengfeng, Zhu Yuanqin, Cao Bingqing, Zhang Jie, Wang Xianlong. Realized stable BP-N at ambient pressure by phosphorus doping[J]. Matter and Radiation at Extremes, 2025, 10(1): 015801. doi: 10.1063/5.0239841

Realized stable BP-N at ambient pressure by phosphorus doping

doi: 10.1063/5.0239841
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xlwang@theory.issp.ac.cn
  • Received Date: 2024-09-22
  • Accepted Date: 2024-12-13
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • Black-phosphorus-structured nitrogen (BP–N) is an attractive high-energy-density material. However, high-pressure-synthesized BP-N will decompose at low pressure and cannot be quenched to ambient conditions. Finding a method to stabilize it at 0 GPa is of great significance for its practical applications. However, unlike cubic gauche, layered polymeric, and hexagonal layered polymeric nitrogen (cg-N, LP-N, and HLP-N), it is always a metastable phase at high pressures up to 260 GPa, and decomposes into chains at 23 GPa. Here, on the basis of first-principles simulations, we find that P-atom doping can effectively reduce the synthesis pressure of BP-N and maintain its stability at 0 GPa. Uniform distribution of P-atom dopants within BP-N layers helps maintain the structural stability of these layers at 0 GPa, while interlayer electrostatic interaction induced by N–P dipoles enhances dynamic stability by eliminating interlayer slipping. Furthermore, pressure is conducive to enhancing the stability of BP-N and its doped forms by suppressing N-chain dissociation. For a configuration with 12.5% doping concentration, a gravimetric energy density of 8.07 kJ/g can be realized, which is nearly twice that of trinitrotoluene.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Guo Chen: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Chengfeng Zhang: Investigation (supporting). Yuanqin Zhu: Investigation (supporting). Bingqing Cao: Investigation (supporting). Jie Zhang: Formal analysis (supporting); Writing – review & editing (supporting). Xianlong Wang: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    All data included in this study are available upon request from the corresponding author.
  • loading
  • [1]
    C. Mailhiot, L. H. Yang, and A. K. McMahan, “Polymeric nitrogen,” Phys. Rev. B 46, 14419 (1992).10.1103/physrevb.46.14419
    [2]
    K. O. Christe, W. W. Wilson, J. A. Sheehy, and J. A. Boatz, “N5+: A novel homoleptic polynitrogen ion as a high energy density material,” J. Am. Chem. Soc. 38, 2004–2009 (1999).10.1002/(SICI)1521-3773(19990712)38:13/14%3c2004::AID-ANIE2004%3e3.0.CO;2-7
    [3]
    D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600 (2018).10.1021/acs.jpclett.8b00540
    [4]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558 (2004).10.1038/nmat1146
    [5]
    M. I. Eremets, M. Yu. Popov, I. A. Trojan, V. N. Denisov, R. Boehler et al. “Polymerization of nitrogen in sodium azide,” J. Chem. Phys. 120, 10618 (2004).10.1063/1.1718250
    [6]
    M. I. Eremets, R. J. Hemley, H. Mao, and E. Gregoryanz, “Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability,” Nature 411, 170 (2001).10.1038/35075531
    [7]
    M. Zhou, M. Sui, X. Shi, Z. Zhao, L. Guo et al. “Lithium pentazolate synthesized by laser heating-compressed lithium azide and nitrogen,” J. Phys. Chem. C 124, 11825 (2020).10.1021/acs.jpcc.0c03949
    [8]
    Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova et al., “Stabilization of hexazine rings in potassium polynitride at high pressure,” Nat. Chem. 14, 794 (2022).10.1038/s41557-022-00925-0
    [9]
    D. Hou, F. Zhang, C. Ji, T. Hannon, H. Zhu et al. “Series of phase transitions in cesium azide under high pressure studied by in situ x-ray diffraction,” Phys. Rev. B 84, 064127 (2011).10.1103/physrevb.84.064127
    [10]
    B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka et al. “High-pressure synthesis of a pentazolate salt,” Chem. Mater. 29, 735 (2017).10.1021/acs.chemmater.6b04538
    [11]
    D. Laniel, F. Trybel, Y. Yin, T. Fedotenko, S. Khandarkhaeva et al., “Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56,” Nat. Chem. 15, 641 (2023).10.1038/s41557-023-01148-7
    [12]
    Y. Yao, J. S. Tse, K. Tanaka, F. Xia, and M. S. Dresselhaus, “Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm,” Phys. Rev. B 77, 052103 (2008).10.1103/physrevb.77.052103
    [13]
    F. Zahariev, A. Hu, J. Hooper, F. Zhang, and T. Woo, “Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation,” Phys. Rev. B 72, 214108 (2005).10.1103/physrevb.72.214108
    [14]
    C. J. Pickard and R. J. Needs, “High-pressure phases of nitrogen,” Phys. Rev. Lett. 102, 125702 (2009).10.1103/physrevlett.102.125702
    [15]
    S. V. Bondarchuk and B. F. Minaev, “Two-dimensional honeycomb (A7) and zigzag sheet (ZS) type nitrogen monolayers. A first principles study of structural, electronic, spectral, and mechanical properties,” Comput. Mater. Sci. 133, 122 (2017).10.1016/j.commatsci.2017.03.007
    [16]
    A. A. Adeleke, M. J. Greschner, A. Majumdar, B. Wan, H. Liu et al. “Single-bonded allotrope of nitrogen predicted at high pressure,” Phys. Rev. B 96, 224104 (2017).10.1103/physrevb.96.224104
    [17]
    W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, “Prediction of new phases of nitrogen at high pressure from first-principles simulations,” Phys. Rev. Lett. 93, 125501 (2004).10.1103/physrevlett.93.125501
    [18]
    B. Hirshberg, R. B. Gerber, and A. I. Krylov, “Calculations predict a stable molecular crystal of N8,” Nat. Chem. 6, 52 (2014).10.1038/nchem.1818
    [19]
    A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).10.1063/1.2210932
    [20]
    X. Wang, Y. Wang, M. Miao, X. Zhong, J. Lv et al. “Cagelike diamondoid nitrogen at high pressures,” Phys. Rev. Lett. 109, 175502 (2012).10.1103/physrevlett.109.175502
    [21]
    J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, and R. J. Needs, “Stable all-nitrogen metallic salt at terapascal pressures,” Phys. Rev. Lett. 111, 175502 (2013).10.1103/physrevlett.111.175502
    [22]
    Z. Raza, C. J. Pickard, C. Pinilla, and A. M. Saitta, “High energy density mixed polymeric phase from carbon monoxide and nitrogen,” Phys. Rev. Lett. 111, 235501 (2013).10.1103/physrevlett.111.235501
    [23]
    J. Zhang, X. Wang, K. Yang, Y. Cheng, and Z. Zeng, “The polymerization of nitrogen in Li2N2 at high pressures,” Sci. Rep. 8, 13144 (2018).10.1038/s41598-018-31355-z
    [24]
    J. Zhang, C. Niu, H. Zhang, J. Zhao, X. Wang et al. “Polymerization of nitrogen in nitrogen–fluorine compounds under pressure,” J. Phys. Chem. Lett. 12, 5731 (2021).10.1021/acs.jpclett.1c01181
    [25]
    J. Shi, W. Cui, J. Hao, M. Xu, X. Wang et al. “Formation of ammonia–helium compounds at high pressure,” Nat. Commun. 11, 3164 (2020).10.1038/s41467-020-16835-z
    [26]
    Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern et al. “Route to high-energy density polymeric nitrogen t-N via He–N compounds,” Nat. Commun. 9, 722 (2018).10.1038/s41467-018-03200-4
    [27]
    B. Wang, F. Guégan, and G. Frapper, “Putting xenon and nitrogen under pressure: Towards new layered and two-dimensional nitrogen allotropes with crown ether-like nanopores,” J. Mater. Chem. C 10, 10374 (2022).10.1039/d2tc01887j
    [28]
    T. Plisson, G. Weck, and P. Loubeyre, “(N2)6Ne7: A high pressure van der Waals insertion compound,” Phys. Rev. Lett. 113, 025702 (2014).10.1103/physrevlett.113.025702
    [29]
    L. Liu, S. Zhang, and H. Zhang, “Pressure-driven Ne-bearing polynitrides with ultrahigh energy density,” Chin. Phys. Lett. 39, 056102 (2022).10.1088/0256-307x/39/5/056102
    [30]
    Y. Li, J. Hao, H. Liu, S. Lu, and J. S. Tse, “High-energy density and superhard nitrogen-rich B-N compounds,” Phys. Rev. Lett. 115, 105502 (2015).10.1103/physrevlett.115.105502
    [31]
    C. Zhang, C. Sun, B. Hu, C. Yu, and M. Lu, “Synthesis and characterization of the pentazolate anion cyclo-N5− in (N5)6(H3O)3(NH4)4Cl,” Science 355, 374 (2017).10.1126/science.aah3840
    [32]
    K. Yin, Y. Wang, H. Liu, F. Peng, and L. Zhang, “N2H: A novel polymeric hydronitrogen as a high energy density material,” J. Mater. Chem. A 3, 4188 (2015).10.1039/c4ta06555g
    [33]
    P. Wang, Y. Xu, Q. Lin, and M. Lu, “Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5− and its derivatives,” Chem. Soc. Rev. 47, 7522 (2018).10.1039/c8cs00372f
    [34]
    D. Tomasino, M. Kim, J. Smith, and C.-S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/physrevlett.113.205502
    [35]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/physrevlett.122.066001
    [36]
    X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112, 4523 (2015).10.1073/pnas.1416581112
    [37]
    C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou et al., “Nitrogen in black phosphorus structure,” Sci. Adv. 6, eaba9206 (2020).10.1126/sciadv.aba9206
    [38]
    D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton et al. “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020).10.1103/physrevlett.124.216001
    [39]
    Y. Liu, H. Su, C. Niu, X. Wang, J. Zhang et al. “Synthesis of black phosphorus structured polymeric nitrogen,” Chin. Phys. B 29, 106201 (2020).10.1088/1674-1056/aba9bd
    [40]
    M. Bykov, E. Bykova, S. Chariton, V. B. Prakapenka, I. G. Batyrev et al. “Stabilization of pentazolate anions in the high-pressure compounds Na2N5 and NaN5 and in the sodium pentazolate framework NaN5 · N2,” Dalton Trans. 50, 7229 (2021).10.1039/d1dt00722j
    [41]
    D. L. V. K. Prasad, N. W. Ashcroft, and R. Hoffmann, “Evolving structural diversity and metallicity in compressed lithium azide,” J. Phys. Chem. C 117, 20838 (2013).10.1021/jp405905k
    [42]
    F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363 (2015).10.1021/acs.jpclett.5b00995
    [43]
    M. Zhang, K. Yin, X. Zhang, H. Wang, Q. Li et al. “Structural and electronic properties of sodium azide at high pressure: A first principles study,” Solid State Commun. 161, 13 (2013).10.1016/j.ssc.2013.01.032
    [44]
    B. A. Steele and I. I. Oleynik, “Sodium pentazolate: A nitrogen rich high energy density material,” Chem. Phys. Lett. 643, 21 (2016).10.1016/j.cplett.2015.11.008
    [45]
    S. Wei, D. Li, Z. Liu, X. Li, F. Tian et al. “Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials,” Phys. Chem. Chem. Phys. 19, 9246 (2017).10.1039/c6cp08771j
    [46]
    S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang et al. “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure,” J. Phys. Chem. C 121, 11037 (2017).10.1021/acs.jpcc.7b00474
    [47]
    K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao et al. “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205 (2019).10.1021/acs.jpcc.8b12527
    [48]
    S. Zhang, Z. Zhao, L. Liu, and G. Yang, “Pressure-induced stable BeN4 as a high-energy density material,” J. Power Sources 365, 155 (2017).10.1016/j.jpowsour.2017.08.086
    [49]
    B. Huang and G. Frapper, “Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds,” Chem. Mater. 30, 7623 (2018).10.1021/acs.chemmater.8b02907
    [50]
    C. Niu, Y. Cheng, K. Yang, J. Zhang, H. Zhang et al. “Boron-dopant enhanced stability of diamane with tunable band gap,” J. Phys.: Condens. Matter 32, 135503 (2020).10.1088/1361-648x/ab5f37
    [51]
    C. Niu, J. Zhang, H. Zhang, J. Zhao, W. Xia et al. “Configuration stability and electronic properties of diamane with boron and nitrogen dopants,” Phys. Rev. B 105, 174106 (2022).10.1103/physrevb.105.174106
    [52]
    X. Shi, B. Liu, S. Liu, S. Niu, S. Liu et al. “Polymeric nitrogen A7 layers stabilized in the confinement of a multilayer BN matrix at ambient conditions,” Sci. Rep. 8, 13758 (2018).10.1038/s41598-018-31973-7
    [53]
    S. Liu, H. Li, Z. Yao, and S. Lu, “Study of cage-like diamondoid polymeric nitrogen N10 confined inside single-wall carbon-nanotube,” Mater. Today Commun. 26, 101670 (2021).10.1016/j.mtcomm.2020.101670
    [54]
    S. Liu, M. Yao, F. Ma, B. Liu, Z. Yao et al. “High energetic polymeric nitrogen stabilized in the confinement of boron nitride nanotube at ambient conditions,” J. Phys. Chem. C 120, 16412 (2016).10.1021/acs.jpcc.6b04374
    [55]
    S. Liu, B. Liu, Z. Yao, S. Liu, X. Shi et al. “Armchair shaped polymeric nitrogen N8 chains confined in h-BN matrix at ambient conditions: Stability and vibration analysis,” RSC Adv. 9, 29987 (2019).10.1039/c9ra02947h
    [56]
    V. Timoshevskii, W. Ji, H. Abou-Rachid, L.-S. Lussier, and H. Guo, “Polymeric nitrogen in a graphene matrix: An ab initio study,” Phys. Rev. B 80, 115409 (2009).10.1103/physrevb.80.115409
    [57]
    X. Wang, C. Hou, X. Zheng, and Z. Zeng, “Stability of pyridine-like and pyridinium-like nitrogen in graphene,” J. Phys.: Condens. Matter 31, 265403 (2019).10.1088/1361-648x/ab11a8
    [58]
    G. Chen, C. Niu, W. Xia, J. Zhang, Z. Zeng et al. “Route to stabilize cubic gauche polynitrogen to ambient conditions via surface saturation by hydrogen,” Chin. Phys. Lett. 40, 086102 (2023).10.1088/0256-307x/40/8/086102
    [59]
    Y. Xu, G. Chen, F. Du, M. Li, L. Wu et al., “Free-standing cubic gauche nitrogen stable at 760 K under ambient pressure,” Sci. Adv. 10, eadq5299 (2024).10.1126/sciadv.adq5299
    [60]
    P. W. Bridgman, “Two new modifications of phosphorus,” J. Am. Chem. Soc. 36, 1344 (1914).10.1021/ja02184a002
    [61]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
    [62]
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).10.1103/physrev.140.a1133
    [63]
    J. P. Perdew, Y. Wang, G. Kresse, and D. Joubert, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244 (1992).10.1103/physrevb.45.13244
    [64]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
    [65]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).10.1103/physrevb.59.1758
    [66]
    S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787 (2006).10.1002/jcc.20495
    [67]
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344
    [68]
    J. Klimeš, D. R. Bowler, and A. Michaelides, “van der Waals density functionals applied to solids,” Phys. Rev. B 83, 195131 (2011).10.1103/physrevb.83.195131
    [69]
    D. Laniel, F. Trybel, A. Néri, Y. Yin, A. Aslandukov et al., “Revealing phosphorus nitrides up to the megabar regime: Synthesis of α′‐P3N5, δ‐P3N5 and PN2,” Chem.-Eur. J. 28, e202201998 (2022).10.1002/chem.202203122
    [70]
    V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, “VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code,” Comput. Phys. Commun. 267, 108033 (2021).10.1016/j.cpc.2021.108033
    [71]
    T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J. Comput. Chem. 33, 580 (2012).10.1002/jcc.22885
    [72]
    M. J. Kamlet and S. J. Jacobs, “Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives,” J. Chem. Phys. 48, 23 (1968).10.1063/1.1667908
    [73]
    T. Zhang, S. Zhang, Q. Chen, and L.-M. Peng, “Metastability of single-bonded cubic-gauche structure of N under ambient pressure,” Phys. Rev. B 73, 094105 (2006).10.1103/physrevb.73.094105
    [74]
    Z. Zhai, G. Chen, J. Zhang, X. Wang, and Z. Zeng, “Investigations of point defect and interface in cg-N under high-pressure,” AIP Adv. 13, 055324 (2023).10.1063/5.0152341
    [75]
    M. M. G. Alemany and J. L. Martins, “Density-functional study of nonmolecular phases of nitrogen: Metastable phase at low pressure,” Phys. Rev. B 68, 024110 (2003).10.1103/physrevb.68.024110
    [76]
    M. J. Kamlet and C. Dickinson, “Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys. 48, 43 (1968).10.1063/1.1667939
    [77]
    [78]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (39) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return