Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
Zhang Lu, Lin Zhiwei, Jing Longfei, Zheng Jianhua, Wang Qiangqiang, Li Sanwei, Cao Zhurong, Dong Yunsong, Deng Bo, Li Liling, Li Hang, Li Yulong, Du Huabing, Zhan Xiayu, Xu Xibin, Niu Gao, Zhou Wei, Kuang Longyu, Yang Dong, Yang Jiamin, Zhao Zongqing, Ding Yongkun, Zhang Weiyan. First observations on wall plasma expansion and x-ray flux in foam hohlraum at 100 kJ laser facility[J]. Matter and Radiation at Extremes, 2025, 10(2): 027401. doi: 10.1063/5.0237908
Citation: Zhang Lu, Lin Zhiwei, Jing Longfei, Zheng Jianhua, Wang Qiangqiang, Li Sanwei, Cao Zhurong, Dong Yunsong, Deng Bo, Li Liling, Li Hang, Li Yulong, Du Huabing, Zhan Xiayu, Xu Xibin, Niu Gao, Zhou Wei, Kuang Longyu, Yang Dong, Yang Jiamin, Zhao Zongqing, Ding Yongkun, Zhang Weiyan. First observations on wall plasma expansion and x-ray flux in foam hohlraum at 100 kJ laser facility[J]. Matter and Radiation at Extremes, 2025, 10(2): 027401. doi: 10.1063/5.0237908

First observations on wall plasma expansion and x-ray flux in foam hohlraum at 100 kJ laser facility

doi: 10.1063/5.0237908
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: kuangly0402@caep.cn and yongkun_ding@iapcm.ac.cn
  • Received Date: 2024-09-08
  • Accepted Date: 2024-12-20
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-01
  • The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-III laser facility. Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm3 than in solid gold hohlraums. The radiation temperatures at different angles confirm these results. Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums, resulting in less expanding plasma emission and higher radiation temperature. Thus, foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission, which has potential applications in achieving a higher fusion yield.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Lu Zhang: Investigation (equal); Writing – original draft (equal). Zhiwei Lin: Writing – review & editing (equal). Longfei Jing: Data curation (equal); Software (equal). Jianhua Zheng: Data curation (equal). Qiangqiang Wang: Data curation (equal). Sanwei Li: Conceptualization (equal); Data curation (equal). Zhurong Cao: Data curation (equal). Yunsong Dong: Investigation (equal). Bo Deng: Data curation (equal). Liling Li: Data curation (equal). Hang Li: Data curation (equal). Yulong Li: Data curation (equal). Huabing Du: Data curation (equal). Xiayu Zhan: Data curation (equal). Xibin Xu: Data curation (equal). Gao Niu: Data curation (equal). Wei Zhou: Data curation (equal). Longyu Kuang: Investigation (equal); Software (equal); Writing – review & editing (equal). Dong Yang: Conceptualization (equal); Investigation (equal). Jiamin Yang: Conceptualization (equal); Investigation (equal). Zongqing Zhao: Conceptualization (equal). Yongkun Ding: Conceptualization (equal); Investigation (equal); Writing – review & editing (equal). Weiyan Zhang: Conceptualization (lead).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    J. Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
    [2]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [3]
    G. N. Hall, O. S. Jones, D. J. Strozzi, J. D. Moody, D. Turnbull et al., “The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility,” Phys. Plasmas 24, 052706 (2017).10.1063/1.4983142
    [4]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and N. Team, “Review of the national ignition campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [5]
    S. Le Pape, L. F. Berzak Hopkins, L. Divol, N. Meezan, D. Turnbull et al., “The near vacuum hohlraum campaign at the NIF: A new approach,” Phys. Plasmas 23, 056311 (2016).10.1063/1.4950843
    [6]
    L. Divol, A. Pak, L. F. Berzak Hopkins, S. Le Pape, N. B. Meezan et al., “Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity,” Phys. Plasmas 24, 056309 (2017).10.1063/1.4982215
    [7]
    D. Turnbull, L. F. Berzak Hopkins, S. Le Pape, L. Divol, N. Meezan et al., “Symmetry control in subscale near-vacuum hohlraums,” Phys. Plasmas 23, 052710 (2016).10.1063/1.4950825
    [8]
    M. Hohenberger, D. T. Casey, C. A. Thomas, O. L. Landen, K. L. Baker et al., “Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility,” Phys. Plasmas 26, 112707 (2019).10.1063/1.5121435
    [9]
    A. L. Kritcher, J. Ralph, D. E. Hinkel, T. Döppner, M. Millot et al., “Energy transfer between lasers in low-gas-fill-density hohlraums,” Phys. Rev. E 98, 053206 (2018).10.1103/physreve.98.053206
    [10]
    H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis et al., “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065102 (2024).10.1103/physrevlett.132.065102
    [11]
    J. D. Lindl, S. W. Haan, O. L. Landen, A. R. Christopherson, and R. Betti, “Progress toward a self-consistent set of 1D ignition capsule metrics in ICF,” Phys. Plasmas 25, 122704 (2018).10.1063/1.5049595
    [12]
    K. L. Baker, O. Jones, C. Weber, D. Clark, P. K. Patel et al., “Hydroscaling indirect-drive implosions on the national ignition facility,” Phys. Plasmas 29, 062705 (2022).10.1063/5.0080732
    [13]
    X. Li, Y. Dong, D. Kang, W. Jiang, H. Shen et al., “First indirect drive experiment using a six-cylinder-port hohlraum,” Phys. Rev. Lett. 128, 195001 (2022).10.1103/physrevlett.128.195001
    [14]
    N. Izumi, T. Döppner, J. L. Milovich, O. L. Landen, D. A. Callahan et al., “Control of low-mode drive asymmetry in an efficient long-pulse low gas-fill density Hohlraum,” Phys. Plasmas 30, 032706 (2023).10.1063/5.0136145
    [15]
    D. A. Callahan, O. A. Hurricane, J. E. Ralph, C. A. Thomas, K. L. Baker et al., “Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser,” Phys. Plasmas 25, 056305 (2018).10.1063/1.5020057
    [16]
    K. Lan, “Dream fusion in octahedral spherical hohlraum,” Matter Radiat. Extremes 7, 055701 (2022).10.1063/5.0103362
    [17]
    K. Lan and P. Song, “Foam Au driven by 4ω–2ω ignition laser pulse for inertial confinement fusion,” Phys. Plasmas 24, 052707 (2017).10.1063/1.4983329
    [18]
    Y. S. Dong, W. L. Shang, J. M. Yang, L. Zhang, W. H. Zhang et al., “The impact of low-Z impurities on x-ray conversion efficiency from laser-produced plasmas of low-density gold foam targets,” Phys. Plasmas 20, 123305 (2013).10.1063/1.4859215
    [19]
    G. Ren, J. Liu, W. Huo, and K. Lan, “Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model,” Matter Radiat. Extremes 2, 22–27 (2017).10.1016/j.mre.2016.11.002
    [20]
    M. D. Rosen and J. H. Hammer, “Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss,” Phys. Rev. E 72, 056403 (2005).10.1103/physreve.72.056403
    [21]
    L. Zhang, Y. Ding, Z. Lin, H. Li, L. Jing et al., “Demonstration of enhancement of x-ray flux with foam gold compared to solid gold,” Nucl. Fusion 56, 036006 (2016).10.1088/0029-5515/56/3/036006
    [22]
    W. Shang, J. Yang, and Y. Dong, “Enhancement of laser to x-ray conversion with a low density gold target,” Appl. Phys. Lett. 102, 094105 (2013).10.1063/1.4794845
    [23]
    Y. Dong, J. Yang, L. Zhang, W. Shang, and T. Song, “Enhanced x-ray emissions from low-density high-Z mixture plasmas generated with intense nanosecond laser,” Phys. Lett. A 378, 813 (2014).10.1016/j.physleta.2014.01.030
    [24]
    L. Zhang, Y. Ding, S. Jiang, J. Yang, H. Li et al., “Reducing wall plasma expansion with gold foam irradiated by laser,” Phys. Plasmas 22, 110703 (2015).10.1063/1.4935381
    [25]
    P. E. Young, M. D. Rosen, J. H. Hammer, W. S. Hsing, S. G. Glendinning et al., “Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum,” Phys. Rev. Lett. 101, 035001 (2008).10.1103/physrevlett.101.035001
    [26]
    A. S. Moore, N. B. Meezan, J. Milovich, S. Johnson, R. Heredia et al., “Foam-lined hohlraum, inertial confinement fusion experiments on the National Ignition Facility,” Phys. Rev. E 102, 051201 (2020).10.1103/physreve.102.051201
    [27]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu et al., “Laser performance of the SG-III laser facility,” High Power Laser Sci. Eng. 4, 21 (2016).10.1017/hpl.2016.20
    [28]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu et al., “Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility,” Matter Radiat. Extremes 2, 243–255 (2017).10.1016/j.mre.2017.07.004
    [29]
    Z. Li, X. Jiang, S. Liu, T. Huang, J. Zheng et al., “A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV,” Rev. Sci. Instrum. 81, 073504 (2010).10.1063/1.3460269
    [30]
    Z. Li, X. Zhu, X. Jiang, S. Liu, J. Zheng et al., “Note: Continuing improvements on the novel flat-response x-ray detector,” Rev. Sci. Instrum. 82, 106106 (2011).10.1063/1.3657158
    [31]
    Z. Yuan, T. Chen, Z. R. Cao, K. X. Sun, R. Q. Yi et al., “Energy dependent sensitivity of Au-coated-microchannel plate detector in X-ray range,” High Power Laser Part. Beams 23, 787 (2011).10.3788/HPLPB20112303.0787
    [32]
    G. D. Tsakiris and K. Eidmann, “An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas,” J. Quant. Spectrosc. Radiat. Transfer 38, 353–368 (1987).10.1016/0022-4073(87)90030-6
    [33]
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford University Press, Inc., New York, 2004).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (24) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return