Citation: | Li Guo-Guang, Sheng Liang, Duan Bao-Jun, Li Yang, Song Yan, Zhu Zi-Jian, Yan Wei-Peng, Hei Dong-Wei, Xing Qing-Zi. Single-image super-resolution of gamma-ray imaging system using deep denoiser prior based on plug-and-play framework[J]. Matter and Radiation at Extremes, 2025, 10(2): 027402. doi: 10.1063/5.0236541 |
[1] |
H. O. Anger, “Use of a gamma-ray pinhole camera for in vivo studies,” Nature 170, 200–201 (1952).10.1038/170200b0
|
[2] |
G. Li, L. Sheng, B. Duan, Y. Li, D. Hei et al., “Monte Carlo simulation of spatial resolution of lens-coupled LYSO scintillator for intense pulsed gamma-ray imaging system with large field of view,” Nucl. Eng. Technol. 56, 2650–2658 (2024).10.1016/j.net.2024.02.024
|
[3] |
J. Zhang, Q. Yi, L. Li, F. Zhang, D. Chen et al., “Simulation and experimental study of the angle-dependent sensitivity of the thick pinhole used for gamma imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 915, 24–30 (2019).10.1016/j.nima.2018.10.163
|
[4] |
Z. Wang, A. F. T. Leong, A. Dragone, A. E. Gleason, R. Ballabriga et al., “Ultrafast radiographic imaging and tracking: An overview of instruments, methods, data, and applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 1057, 168690 (2023).10.1016/j.nima.2023.168690
|
[5] |
P. Knoblauch, V. Raspa, F. D. Lorenzo, A. Clausse, and C. Moreno, “Hard X-ray dosimetry of a plasma focus suitable for industrial radiography,” Radiat. Phys. Chem. 145, 39–42 (2018).10.1016/j.radphyschem.2017.12.014
|
[6] |
H. B. Barber, B. A. Apotovsky, F. L. Augustine, H. H. Barrett, E. L. Dereniak et al., “Semiconductor pixel detectors for gamma-ray imaging in nuclear medicine,” Nucl. Instrum. Methods Phys. Res., Sect. A 395, 421–428 (1997).10.1016/s0168-9002(97)00615-3
|
[7] |
A. M. Alyassin, H. A. Maqsoud, A. M. Mashat, A.-S. Al-Mohr, and S. Abdulwajid, “Feasibility study of gamma-ray medical radiography,” Appl. Radiat. Isot. 72, 16–29 (2013).10.1016/j.apradiso.2012.11.001
|
[8] |
G. Petringa, G. A. P. Cirrone, C. Caliri, G. Cuttone, L. Giuffrida et al., “Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications,” J. Instrum. 12, C03049 (2017).10.1088/1748-0221/12/03/c03049
|
[9] |
D. N. Fittinghoff, N. Birge, and V. Geppert-Kleinrath, “Neutron imaging of inertial confinement fusion implosions,” Rev. Sci. Instrum. 94, 021101 (2023).10.1063/5.0124074
|
[10] |
C. Tian, M. Yu, L. Shan, F. Wu, B. Bi et al., “Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography,” Matter Radiat. Extremes 9, 027602 (2024).10.1063/5.0045112
|
[11] |
V. Geppert-Kleinrath, N. Hoffman, N. Birge, A. DeYoung, D. Fittinghoff et al., “Gamma-ray imaging of inertial confinement fusion implosions reveals remaining ablator carbon distribution,” Phys. Plasmas 30, 022703 (2023).10.1063/5.0122938
|
[12] |
Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, “Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted γ-photons,” Phys. Rev. Res. 4, L022024 (2022).10.1103/physrevresearch.4.l022024
|
[13] |
Z. Gong, X. Shen, K. Z. Hatsagortsyan, and C. H. Keitel, “Electron slingshot acceleration in relativistic preturbulent shocks explored via emitted photon polarization,” Phys. Rev. Lett. 131, 225101 (2023).10.1103/physrevlett.131.225101
|
[14] |
T. Da, J. Ma, B. Duan, C. Han, W. Gu et al., “Pulsed radiation image restoration based on unsupervised deep learning,” Nucl. Instrum. Methods Phys. Res., Sect. A 1061, 169128 (2024).10.1016/j.nima.2024.169128
|
[15] |
C. A. Barrera, E. C. Morse, and M. J. Moran, “Image reconstruction algorithms for inertial confinement fusion neutron imaging,” Rev. Sci. Instrum. 77, 10E716 (2006).10.1063/1.2220042
|
[16] |
R. A. Lerche, D. Ress, R. J. Ellis, S. M. Lane, and K. A. Nugent, “Neutron penumbral imaging of laser-fusion targets,” Laser Part. Beams 9, 99–118 (1991).10.1017/s0263034600002366
|
[17] |
W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).10.1364/josa.62.000055
|
[18] |
R. Noumeir, G. E. Mailloux, and R. Lemieux, “An expectation maximization reconstruction algorithm for emission tomography with non-uniform entropy prior,” Int. J. Biomed. Comput. 39, 299–310 (1995).10.1016/0020-7101(95)01111-q
|
[19] |
Y. Park, L. Reichel, G. Rodriguez, and X. Yu, “Parameter determination for Tikhonov regularization problems in general form,” J. Comput. Appl. Math. 343, 12–25 (2018).10.1016/j.cam.2018.04.049
|
[20] |
L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).10.1016/0167-2789(92)90242-f
|
[21] |
D. Wang, H. Hu, F. Zhang, and Q. Jia, “Source reconstruction for neutron coded-aperture imaging: A sparse method,” Rev. Sci. Instrum. 88, 083502 (2017).10.1063/1.4996193
|
[22] |
Q. Li, Y. Yan, F. Wang, and J. He, “Combination algorithms applied to source reconstruction for neutron coded images and restoration for incomplete coded images,” Rev. Sci. Instrum. 94, 053301 (2023).10.1063/5.0138742
|
[23] |
M. Yan, H. Hu, G. Hu, Z. Liu, C. He et al., “Comparison of heuristic and deterministic algorithms in neutron coded imaging reconstruction,” Nucl. Instrum. Methods Phys. Res., Sect. A 985, 164704 (2021).10.1016/j.nima.2020.164704
|
[24] |
P. S. Cheol, P. M. Kyu, and K. M. Gi, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003).10.1109/msp.2003.1203207
|
[25] |
J. Tian and K.-K. Ma, “A survey on super-resolution imaging,” Signal, Image Video Process. 5, 329–342 (2011).10.1007/s11760-010-0204-6
|
[26] |
W. Yang, X. Zhang, Y. Tian, W. Wang, J. H. Xue et al., “Deep learning for single image super-resolution: A brief review,” IEEE Trans. Multimedia 21, 3106–3121 (2019).10.1109/tmm.2019.2919431
|
[27] |
Z. Wang, J. Chen, and S. C. H. Hoi, “Deep learning for image super-resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 43, 3365–3387 (2021).10.1109/tpami.2020.2982166
|
[28] |
W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse representation for image restoration,” IEEE Trans. Image Process. 22, 1620–1630 (2013).10.1109/tip.2012.2235847
|
[29] |
J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation for image restoration,” IEEE Trans. Image Process. 23, 3336–3351 (2014).10.1109/tip.2014.2323127
|
[30] |
C. Ren, X. He, Q. Teng, Y. Wu, and T. Q. Nguyen, “Single image super-resolution using local geometric duality and non-local similarity,” IEEE Trans. Image Process. 25, 2168–2183 (2016).10.1109/tip.2016.2542442
|
[31] |
C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016).10.1109/tpami.2015.2439281
|
[32] | |
[33] | |
[34] |
S. Gao and X. Zhuang, “Bayesian image super-resolution with deep modeling of image statistics,” IEEE Trans. Pattern Anal. Mach. Intell. 45, 1405–1423 (2023).10.1109/tpami.2022.3163307
|
[35] |
R. Zhang, P. Gong, X. Tang, P. Wang, C. Zhou et al., “Reconstruction method for gamma-ray coded-aperture imaging based on convolutional neural network,” Nucl. Instrum. Methods Phys. Res., Sect. A 934, 41–51 (2019).10.1016/j.nima.2019.04.055
|
[36] |
C.-M. Wang, R. Shi, X.-G. Tuo, G. Yang, Z. Li et al., “Reconstruction of tomographic gamma scanning transmission image from sparse projections based on convolutional neural networks,” Nucl. Instrum. Methods Phys. Res., Sect. A 1039, 167110 (2022).10.1016/j.nima.2022.167110
|
[37] |
H.-J. Choi, J. Jeong, H. Lee, S. G. Kim, J. J. Ahn et al., “Image reconstruction method of gamma emission tomography based on prior-aware information and machine learning for partial-defect detection of PWR-type spent nuclear fuel,” Nucl. Eng. Technol. 56, 4770–4781 (2024).10.1016/j.net.2024.06.040
|
[38] |
J. Song, J. Zheng, Z. Chen, J. Chen, and F. Wang, “Neutron penumbral image reconstruction with a convolution neural network using fast Fourier transform,” Rev. Sci. Instrum. 95, 013509 (2024).10.1063/5.0175347
|
[39] | |
[40] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011), available at https://web.stanford.edu/~boyd/papers/admm_distr_stats.html.
|
[41] |
D. Geman and Y. Chengda, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Image Process. 4, 932–946 (1995).10.1109/83.392335
|
[42] |
Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: Regularization by denoising (RED),” SIAM J. Imaging Sci. 10, 1804–1844 (2017).10.1137/16m1102884
|
[43] |
K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans. Image Process. 26, 3142–3155 (2017).10.1109/tip.2017.2662206
|
[44] |
K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible solution for CNN-based image denoising,” IEEE Trans. Image Process. 27, 4608–4622 (2018).10.1109/tip.2018.2839891
|
[45] |
K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool et al., “Plug-and-play image restoration with deep denoiser prior,” IEEE Trans. Pattern Anal. Mach. Intell. 44, 6360–6376 (2022).10.1109/tpami.2021.3088914
|
[46] |
T. Liu, Q. Yin, J. Yang, Y. Wang, and W. An, “Combining deep denoiser and low-rank priors for infrared small target detection,” Pattern Recognit. 135, 109184 (2023).10.1016/j.patcog.2022.109184
|
[47] |
Z. Lai, K. Wei, and Y. Fu, “Deep plug-and-play prior for hyperspectral image restoration,” Neurocomputing 481, 281–293 (2022).10.1016/j.neucom.2022.01.057
|
[48] |
Y. Chen, X. Gui, J. Zeng, X. L. Zhao, and W. He, “Combining low-rank and deep plug-and-play priors for snapshot compressive imaging,” IEEE Trans. Neural Netw. Learn. Sys. 35(11), 16396–16408 (2023).10.1109/TNNLS.2023.3294262
|
[49] |
B. Wan, F. Yang, D. Ding, S. Zhao, J. Xie et al., “Effects of yttrium content on intrinsic radioactivity energy spectra of LYSO:Ce crystals,” Nucl. Instrum. Methods Phys. Res., Sect. A 1001, 165263 (2021).10.1016/j.nima.2021.165263
|
[50] |
S. i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing 5, 185–196 (1993).10.1016/0925-2312(93)90006-o
|
[51] |
G. Li, L. Sheng, B. Duan, Y. Li, D. Hei, and Q. Xing, “Super-resolution image reconstruction of a neutron thick pinhole imaging system using image denoiser prior based on half quadratic splitting method,” Nucl. Instrum. Methods Phys. Res., Sect. A 1061, 169130 (2024).10.1016/j.nima.2024.169130
|
[52] |
A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), Vol. 2, pp. 60–65.
|
[53] |
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).10.1109/tip.2007.901238
|
[54] |
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Lecture Notes in Computer Science (Springer, 2015), Vol. 9351, pp. 234–241.10.1007/978-3-319-24574-4_28
|
[55] | |
[56] |
Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration,” IEEE Trans. Pattern Anal. Mach. Intell. 39, 1256–1272 (2017).10.1109/tpami.2016.2596743
|
[57] | |
[58] | |
[59] | |
[60] |
S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comput. Imaging 3(1), 84–98 (2017).10.1109/tci.2016.2629286
|
[61] |
M. S. C. Almeida and M. Figueiredo, “Deconvolving images with unknown boundaries using the alternating direction method of multipliers,” IEEE Trans. Image Process. 22, 3074–3086 (2013).10.1109/tip.2013.2258354
|
[62] |
A. Matakos, S. Ramani, and J. A. Fessler, “Accelerated edge-preserving image restoration without boundary artifacts,” IEEE Trans. Image Process. 22, 2019–2029 (2013).10.1109/tip.2013.2244218
|
[63] |
C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Software 8, 43–71 (1982).10.1145/355984.355989
|
[64] |
P. Volegov, C. R. Danly, D. N. Fittinghoff, G. P. Grim, N. Guler et al., “Neutron source reconstruction from pinhole imaging at national ignition facility,” Rev. Sci. Instrum. 85, 023508 (2014).10.1063/1.4865456
|