Citation: | Lian C.-W., Ji Y., Yan R., Li J., Wang L.-F., Ding Y.-K., Zheng J.. Two-plasmon-decay instability stimulated by dual laser beams in inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(1): 017403. doi: 10.1063/5.0235643 |
[1] |
A. Zylstra, O. Hurricane, D. Callahan, A. Kritcher, J. Ralph et al., “Burning plasma achieved in inertial fusion,” Nature 601, 542–548 (2022).10.1038/s41586-021-04281-w
|
[2] |
H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/physrevlett.129.075001
|
[3] |
R. Betti, “A milestone in fusion research is reached,” Nat. Rev. Phys. 5, 6–8 (2023).10.1038/s42254-022-00547-y
|
[4] |
R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
|
[5] |
R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald et al., “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
|
[6] |
X. T. He, J. W. Li, Z. F. Fan, L. F. Wang, J. Liu et al., “A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion,” Phys. Plasmas 23, 082706 (2016).10.1063/1.4960973
|
[7] |
J. Zhang, W. M. Wang, X. H. Yang, D. Wu, Y. Y. Ma et al., “Double-cone ignition scheme for inertial confinement fusion,” Philos. Trans. R. Soc., A 378, 20200015 (2020).10.1098/rsta.2020.0015
|
[8] |
C. S. Liu and M. N. Rosenbluth, “Parametric decay of electromagnetic waves into two plasmons and its consequences,” Phys. Fluids 19, 967–971 (1976).10.1063/1.861591
|
[9] |
A. Simon, R. W. Short, E. A. Williams, and T. Dewandre, “On the inhomogeneous two-plasmon instability,” Phys. Fluids 26, 3107 (1983).10.1063/1.864037
|
[10] |
B. B. Afeyan and E. A. Williams, “A variational approach to parametric instabilities in inhomogeneous plasmas III: Two-plasmon decay,” Phys. Plasmas 4, 3827 (1997).10.1063/1.872506
|
[11] |
V. A. Smalyuk, D. Shvarts, R. Betti, J. A. Delettrez, D. H. Edgell et al., “Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic d2 ablators,” Phys. Rev. Lett. 100, 185005 (2008).10.1103/physrevlett.100.185005
|
[12] |
R. Yan, C. Ren, J. Li, A. V. Maximov, W. B. Mori et al., “Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion,” Phys. Rev. Lett. 108, 175002 (2012).10.1103/physrevlett.108.175002
|
[13] |
A. B. Langdon, B. F. Lasinski, and W. L. Kruer, “Nonlinear saturation and recurrence of the two-plasmon decay instability,” Phys. Rev. Lett. 43, 133–136 (1979).10.1103/physrevlett.43.133
|
[14] |
H. Baldis and C. Walsh, “Experimental observations of nonlinear saturation of the two-plasmon decay instability,” Phys. Rev. Lett. 47, 1658 (1981).10.1103/physrevlett.47.1658
|
[15] |
D. F. DuBois, D. A. Russell, and H. A. Rose, “Saturation spectra of the two-plasmon decay instability,” Phys. Rev. Lett. 74, 3983–3986 (1995).10.1103/physrevlett.74.3983
|
[16] |
D. A. Russell and D. F. DuBois, “32ω0 radiation from the laser-driven two-plasmon decay instability in an inhomogeneous plasma,” Phys. Rev. Lett. 86, 428–431 (2001).10.1103/physrevlett.86.428
|
[17] |
R. Yan, A. V. Maximov, C. Ren, and F. S. Tsung, “Growth and saturation of convective modes of the two-plasmon decay instability in inertial confinement fusion,” Phys. Rev. Lett. 103, 175002 (2009).10.1103/physrevlett.103.175002
|
[18] |
R. Yan, A. V. Maximov, and C. Ren, “The linear regime of the two-plasmon decay instability in inhomogeneous plasmas,” Phys. Plasmas 17, 052701 (2010).10.1063/1.3414350
|
[19] |
W. Seka, D. H. Edgell, J. F. Myatt, A. V. Maximov, R. W. Short et al., “Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments,” Phys. Plasmas 16, 052701 (2009).10.1063/1.3125242
|
[20] |
C. Stoeckl, R. E. Bahr, B. Yaakobi, W. Seka, S. P. Regan et al., “Multibeam effects on fast-electron generation from two-plasmon-decay instability,” Phys. Rev. Lett. 90, 235002 (2003).10.1103/physrevlett.90.235002
|
[21] |
D. T. Michel, A. V. Maximov, R. W. Short, S. X. Hu, J. F. Myatt et al., “Experimental validation of the two-plasmon-decay common-wave process,” Phys. Rev. Lett. 109, 155007 (2012).10.1103/physrevlett.109.155007
|
[22] |
D. Michel, A. Maximov, R. Short, J. Delettrez, D. Edgell et al., “Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations,” Phys. Plasmas 20, 055703 (2013).10.1063/1.4803090
|
[23] |
J. Zhang, J. Myatt, R. Short, A. Maximov, H. Vu et al., “Multiple beam two-plasmon decay: Linear threshold to nonlinear saturation in three dimensions,” Phys. Rev. Lett. 113, 105001 (2014).10.1103/physrevlett.113.105001
|
[24] |
H. Wen, A. V. Maximov, R. W. Short, J. F. Myatt, R. Yan et al., “Two-plasmon decay instability in inhomogeneous plasmas at oblique laser incidence,” Phys. Plasmas 23, 092713 (2016).10.1063/1.4963252
|
[25] |
C. Lian, Y. Ji, R. Yan, S. Cao, C. Ren et al., “Two plasmon decay instability stimulated by large-incidence-angle laser in inertial confinement fusion,” Plasma Phys. Controlled Fusion 64, 085009 (2022).10.1088/1361-6587/ac7b47
|
[26] |
F. Zhou, S. Cao, C. Lian, Y. Ji, R. Yan et al., “Large-incidence-angle multiple-beam two-plasmon decay instability in inertial confinement fusion,” Phys. Plasmas 30, 092702 (2023).10.1063/5.0162495
|
[27] |
L. J. Perkins, R. Betti, K. N. LaFortune, and W. H. Williams, “Shock ignition: A new approach to high gain inertial confinement fusion on the National Ignition Facility,” Phys. Rev. Lett. 103, 045004 (2009).10.1103/physrevlett.103.045004
|
[28] |
R. Fonseca, L. Silva, F. Tsung, V. Decyk, W. Lu et al., “Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators,” Lect. Notes Comput. Sci. 2331, 342 (2002).10.1007/3-540-47789-6_36
|
[29] |
K. Nanbu, “Theory of cumulative small-angle collisions in plasmas,” Phys. Rev. E 55, 4642 (1997).10.1103/physreve.55.4642
|
[30] |
K. Nanbu and S. Yonemura, “Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle,” J. Comput. Phys. 145, 639–654 (1998).10.1006/jcph.1998.6049
|
[31] |
T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” J. Comput. Phys. 25, 205–219 (1977).10.1016/0021-9991(77)90099-7
|
[32] |
W. L. Kruer, The Physics of Laser Plasma Interactions (Westview Press, Boulder, CO, 2003).
|
[33] |
R. K. Follett, D. H. Edgell, R. J. Henchen, S. X. Hu, J. Katz et al., “Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering,” Phys. Rev. E 91, 031104 (2015).10.1103/physreve.91.031104
|
[34] |
M. N. Rosenbluth, R. B. White, and C. S. Liu, “Temporal evolution of a three-wave parametric instability,” Phys. Rev. Lett. 31, 1190–1193 (1973).10.1103/physrevlett.31.1190
|
[35] |
R. Yan, J. Li, and C. Ren, “Intermittent laser-plasma interactions and hot electron generation in shock ignition,” Phys. Plasmas 21, 062705 (2014).10.1063/1.4882682
|
[36] |
S. H. Cao, D. Patel, A. Lees, C. Stoeckl, M. J. Rosenberg et al., “Predicting hot electron generation in inertial confinement fusion with particle-in-cell simulations,” Phys. Rev. E 106, 055214 (2022).10.1103/physreve.106.055214
|
[37] |
I. V. Igumenshchev, W. Seka, D. H. Edgell, D. T. Michel, D. H. Froula et al., “Crossed-beam energy transfer in direct-drive implosions,” Phys. Plasmas 19, 056314 (2012).10.1063/1.4718594
|
[38] |
I. V. Igumenshchev, D. H. Froula, D. H. Edgell, V. N. Goncharov, T. J. Kessler et al., “Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions,” Phys. Rev. Lett. 110, 145001 (2013).10.1103/physrevlett.110.145001
|
[39] |
D. H. Froula, T. J. Kessler, I. V. Igumenshchev, R. Betti, V. N. Goncharov et al., “Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA,” Phys. Plasmas 20, 082704 (2013).10.1063/1.4818427
|
[40] |
H. A. Rose and D. DuBois, “Laser hot spots and the breakdown of linear instability theory with application to stimulated Brillouin scattering,” Phys. Rev. Lett. 72, 2883 (1994).10.1103/physrevlett.72.2883
|
[41] |
B. J. Albright, L. Yin, K. Bowers, and B. Bergen, “Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay,” Phys. Plasmas 23, 032703 (2016).10.1063/1.4943102
|
[42] |
H. Wen, A. Maximov, R. Yan, J. Li, C. Ren et al., “Three-dimensional particle-in-cell modeling of parametric instabilities near the quarter-critical density in plasmas,” Phys. Rev. E 100, 041201 (2019).10.1103/physreve.100.041201
|
[43] |
D. Turnbull, A. Maximov, D. Cao, A. Christopherson, D. Edgell et al., “Impact of spatiotemporal smoothing on the two-plasmon–decay instability,” Phys. Plasmas 27, 102710 (2020).10.1063/5.0019080
|