Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
Lu Zhantao, Xie Xinglong, Liang Xiao, Sun Meizhi, Zhu Ping, Zhang Xuejie, Li Linjun, Xue Hao, Zhang Guoli, Haq Rashid Ul, Zhang Dongjun, Zhu Jianqiang. Effect of laser wavelength on growth of ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(2): 027403. doi: 10.1063/5.0235138
Citation: Lu Zhantao, Xie Xinglong, Liang Xiao, Sun Meizhi, Zhu Ping, Zhang Xuejie, Li Linjun, Xue Hao, Zhang Guoli, Haq Rashid Ul, Zhang Dongjun, Zhu Jianqiang. Effect of laser wavelength on growth of ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(2): 027403. doi: 10.1063/5.0235138

Effect of laser wavelength on growth of ablative Rayleigh–Taylor instability in inertial confinement fusion

doi: 10.1063/5.0235138
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: xiexl329@siom.ac.cn and jqzhu@siom.ac.cn
  • Received Date: 2024-08-26
  • Accepted Date: 2025-02-10
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-01
  • The effect of drive laser wavelength on the growth of ablative Rayleigh–Taylor instability (ARTI) in inertial confinement fusion (ICF) is studied with two-dimensional numerical simulations. The results show that in the plasma acceleration phase, shorter wavelengths lead to more efficient coupling between the laser and the kinetic energy of the implosion fluid. Under the condition that the laser energy coupled to the implosion fluid is constant, the ARTI growth rate decreases as the laser wavelength moves toward the extreme ultraviolet band, reaching its minimum value near λ = 65 nm, and when the laser wavelength continuously moves toward the X-ray band, the ARTI growth rate increases rapidly. It is found that the results deviate from the theoretical ARTI growth rate. As the laser intensity benchmark increases, the position of the minimum ARTI growth rate shifts toward shorter wavelengths. As the initial sinusoidal perturbation wavenumber decreases, the position of the minimum ARTI growth rate shifts toward longer wavelengths. We believe that the conclusions drawn from the present simulations and analysis will help provide a better understanding of the ICF process and improve the theory of ARTI growth.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Zhantao Lu: Conceptualization (equal); Formal analysis (lead); Investigation (equal); Methodology (lead); Software (lead); Visualization (lead); Writing – original draft (lead). Xinglong Xie: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal); Writing – review & editing (lead). Xiao Liang: Data curation (equal). Meizhi Sun: Data curation (equal). Ping Zhu: Investigation (equal). Xuejie Zhang: Investigation (equal). Linjun Li: Investigation (equal). Hao Xue: Investigation (equal). Guoli Zhang: Investigation (equal). Rashid Ul Haq: Investigation (equal). Dongjun Zhang: Investigation (equal). Jianqiang Zhu: Supervision (lead).
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
    [2]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).10.1063/1.4934714
    [3]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
    [4]
    E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Fluid Dyn. 4, 101–104 (1969).10.1007/bf01015969
    [5]
    Helmholtz, “XLIII. On discontinuous movements of fluids,” London, Edinburgh Dublin Philos. Mag. J. Sci. 36(244), 337–346 (1868).10.1080/14786446808640073
    [6]
    M. S. Plesset, “On the stability of fluid flows with spherical symmetry,” J. Appl. Phys. 25(1), 96–98 (1954).10.1063/1.1721529
    [7]
    L. Rayleigh, Scientific Papers II (Cambridge University Press, Cambridge, 1900), p. 200.
    [8]
    G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192–196 (1950).10.1098/rspa.1950.0052
    [9]
    R. Betti, P. Y. Chang, B. K. Spears, K. S. Anderson, J. Edwards, M. Fatenejad, J. D. Lindl, R. L. McCrory, R. Nora, and D. Shvarts, “Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement,” Phys. Plasmas 17, 058102 (2010).10.1063/1.3380857
    [10]
    D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).10.1086/146048
    [11]
    V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).10.1103/physrevlett.88.134502
    [12]
    T. Ikegawa and K. Nishihara, “Ablation effects on weakly nonlinear Rayleigh–Taylor instability with a finite bandwidth,” Phys. Rev. Lett. 89(11), 115001 (2002).10.1103/physrevlett.89.115001
    [13]
    J. Sanz, J. Ramírez, R. Ramis, R. Betti, and R. P. J. Town, “Nonlinear theory of the ablative Rayleigh–Taylor instability,” Phys. Rev. Lett. 89(19), 195002 (2002).10.1103/physrevlett.89.195002
    [14]
    H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676 (1985).10.1063/1.865099
    [15]
    S. E. Bodner, “Rayleigh–Taylor instability and laser-pellet fusion,” Phys. Rev. Lett. 33, 761 (1974).10.1103/physrevlett.33.761
    [16]
    M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluid. Plasma Phys. 2(5), 1007–1014 (1990).10.1063/1.859274
    [17]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446 (1998).10.1063/1.872802
    [18]
    J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1(5), 1379–1389 (1994).10.1063/1.870688
    [19]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2(11), 3933–4024 (1995).10.1063/1.871025
    [20]
    J. Sanz, “Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion,” Phys. Rev. Lett. 73(20), 2700 (1994).10.1103/physrevlett.73.2700
    [21]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability,” Phys. Plasmas 2(10), 3844–3851 (1995).10.1063/1.871083
    [22]
    V. N. Goncharov, R. Betti, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with large Froude numbers,” Phys. Plasmas 3(4), 1402–1414 (1996).10.1063/1.871730
    [23]
    V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with small Froude numbers,” Phys. Plasmas 3(12), 4665–4676 (1996).10.1063/1.872078
    [24]
    R. Betti, V. N. Goncharov, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts in inertial confinement fusion,” Phys. Plasmas 3(5), 2122–2128 (1996).10.1063/1.871664
    [25]
    A. R. Piriz, J. Sanz, and L. F. Ibanez, “Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited,” Phys. Plasmas 4(4), 1117–1126 (1997).10.1063/1.872200
    [26]
    F. F. Chen, Introduction to Plasma Physics (Plenum Press, New York, 1974).
    [27]
    J. F. Seely and E. G. Harris, “Heating of a plasma by multiphoton inverse bremsstrahlung,” Phys. Rev. A 7, 1064 (1973).10.1103/physreva.7.1064
    [28]
    W. Seka, R. S. Craxton, J. Delettrez, L. Goldman, R. Keck, R. L. McCrory, D. Shvarts, J. M. Soures, and R. Boni, “Measurements and interpretation of the absorption of 0.35 μm laser radiation on planar targets,” Opt. Commun. 40(6), 437–440 (1982).10.1016/0030-4018(82)90049-9
    [29]
    C. Garban-Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff, J. Virmont, M. Weinfeld, and A. Michard, “Effect of laser wavelength and pulse duration on laser-light absorption and back reflection,” Phys. Rev. Lett. 48, 1018 (1982).10.1103/physrevlett.48.1018
    [30]
    M. C. Richardson, R. S. Craxton, J. Delettrez, R. L. Keck, R. L. McCrory, W. Seka, and J. M. Soures, “Absorption physics at 351 nm in spherical geometry,” Phys. Rev. Lett. 54, 1656 (1985).10.1103/physrevlett.54.1656
    [31]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the national ignition facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [32]
    B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J. Suppl. Ser. 131(1), 273 (2000).10.1086/317361
    [33]
    P. Tzeferacos, M. Fatenejad, N. Flocke, C. Graziani, G. Gregori, D. Q. Lamb, D. Lee, J. Meinecke, A. Scopatz, and K. Weide, “FLASH MHD simulations of experiments that study shock-generated magnetic fields,” High Energy Density Phys. 17, 24–31 (2015).10.1016/j.hedp.2014.11.003
    [34]
    C. W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws (Springer, Berlin Heidelberg, 1998), pp. 325–432.
    [35]
    D. Lee, A. E. Deane, and C. Federrath, “A new multidimensional unsplit MHD solver in FLASH3,” in Numerical Numbering of Space Plasma Flows: ASTRONUM-2008, 406 (Astronomical Society of the Pacific, San Francisco, 2009), p. 243.
    [36]
    B. Van Leer, “Towards the ultimate conservative difference scheme,” J. Comput. Phys. 135(2), 229–248 (1997).10.1006/jcph.1997.5704
    [37]
    E. F. Toro, M. Spruce, and W. Speares, “Restoration of the contact surface in the HLL–Riemann solver,” Shock Waves 4, 25–34 (1994).10.1007/bf01414629
    [38]
    R. J. Gelinas, S. K. Doss, and K. Miller, “The moving finite element method: Applications to general partial differential equations with multiple large gradients,” J. Comput. Phys. 40(1), 202–249 (1981).10.1016/0021-9991(81)90207-2
    [39]
    M. Desselberger, O. Willi, M. Savage, and M. J. Lamb, “Measurement of the Rayleigh–Taylor instability in targets driven by optically smoothed laser beams,” Phys. Rev. Lett. 65, 2997 (1990).10.1103/physrevlett.65.2997
    [40]
    J. P. Knauer, R. Betti, D. K. Bradley, T. R. Boehly, T. J. B. Collins, V. N. Goncharov, P. W. Mckenty, D. D. Meyerhofer, V. A. Smalyuk, C. P. Verdon et al., “Single-mode, Rayleigh–Taylor growth-rate measurements on the OMEGA laser system,” Phys. Plasmas 7(1), 338–345 (2000).10.1063/1.873802
    [41]
    H. J. Kull, “Incompressible description of Rayleigh–Taylor instabilities in laser-ablated plasmas,” Phys. Fluid. Plasma Phys. 1, 170–182 (1989).10.1063/1.859084
    [42]
    E. Vold, L. Yin, and B. J. Albright, “Plasma transport simulations of Rayleigh–Taylor instability in near-ICF deceleration regimes,” Phys. Plasmas 28(9), 092709 (2021).10.1063/5.0059043
    [43]
    Y. X. Liu, L. F. Wang, K. G. Zhao, Z. Y. Li, J. F. Wu, W. H. Ye, and Y. J. Li, “Thin-shell effects on nonlinear bubble evolution in the ablative Rayleigh–Taylor instability,” Phys. Plasmas 29(8), 082102 (2022).10.1063/5.0093427
    [44]
    A. J. Schmitt and S. P. Obenschain, “The importance of laser wavelength for driving inertial confinement fusion targets. I. Basic physics,” Phys. Plasmas 30(1), 012701 (2023).10.1063/5.0118080
    [45]
    K. Fang, Z. Zhang, Y.-T. Li, and J. Zhang, “Analytical studies of Rayleigh–Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign,” Acta Phys. Sin. 71(3), 035204 (2022).10.7498/aps.71.20211172
    [46]
    S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F.-F. Zhang et al., “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).10.1088/1612-2011/13/3/035401
    [47]
    G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J. Schafer, M. B. Gaarde, and D. A. Reis, “Solid-state harmonics beyond the atomic limit,” Nature 534(7608), 520 (2016).10.1038/nature17660
    [48]
    S. Han, H. Kim, Y. W. Kim, Y. J. Kim, S. Kim, I. Y. Park, and S. W. Kim, “High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure,” Nat. Commun. 7, 13105 (2016).10.1038/ncomms13105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return