Citation: | Yin Xiaoshuang, Li Songyang, Wang Lijuan, Liu Peiyuan, Cheng Zhihai, Gou Huiyang, Yang Liuxiang. Macroscopic perspective on phase transition behavior of natural single-crystal graphite under different pressure environments[J]. Matter and Radiation at Extremes, 2025, 10(1): 017801. doi: 10.1063/5.0234582 |
[1] |
A. W. Hull, “A new method of X-ray crystal analysis,” Phys. Rev. 10(6), 661–696 (1917).10.1103/PhysRev.10.661
|
[2] |
E. J. Freise, “Structure of graphite,” Nature 193(4816), 671–672 (1962).10.1038/193671a0
|
[3] |
J. D. Bernal, “The structure of graphite,” Proc. R. Soc. London, Ser. A 106(740), 749–773 (1997).10.1098/rspa.1924.0101
|
[4] |
W. Utsumi and T. Yagi, “Light-transparent phase formed by room-temperature compression of graphite,” Science 252(5012), 1542–1544 (1991).10.1126/science.252.5012.1542
|
[5] |
W. L. Mao, H. K. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao et al., “Bonding changes in compressed superhard graphite,” Science 302(5644), 425–427 (2003).10.1126/science.1089713
|
[6] |
Y. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, “Crystal structure of graphite under room-temperature compression and decompression,” Sci. Rep. 2(1), 520 (2012).10.1038/srep00520
|
[7] |
F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorfjun, “Man-made diamonds,” Nature 176(4471), 51–55 (1955).10.1038/176051a0
|
[8] |
H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, “Preparation of diamond,” Nature 184(4693), 1094–1098 (1959).10.1038/1841094a0
|
[9] |
H. Yusa, K. Takemura, Y. Matsui, H. Morishima, K. Watanabe, H. Yamawaki, and K. Aoki, “Direct transformation of graphite to cubic diamond observed in a laser-heated diamond anvil cell,” Appl. Phys. Lett. 72(15), 1843–1845 (1998).10.1063/1.121201
|
[10] |
F. P. Bundy and J. S. Kasper, “Hexagonal diamond—A new form of carbon,” J. Chem. Phys. 46(9), 3437–3446 (1967).10.1063/1.1841236
|
[11] |
R. Z. Khaliullin, H. Eshet, T. D. Kühne, J. Behler, and M. Parrinello, “Nucleation mechanism for the direct graphite-to-diamond phase transition,” Nat. Mater. 10(9), 693–697 (2011).10.1038/nmat3078
|
[12] |
H. Xie, F. Yin, T. Yu, J.-T. Wang, and C. Liang, “Mechanism for direct graphite-to-diamond phase transition,” Sci. Rep. 4(1), 5930 (2014).10.1038/srep05930
|
[13] |
S. L. Fahy, S. G. Cohen, and L. Marvin, Phys. Rev. B 35(14), 7623–7626 (1987).10.1103/PhysRevB.35.7623
|
[14] |
Y. X. Zhao and I. L. Spain, “X-ray diffraction data for graphite to 20 GPa,” Phys. Rev. B 40(2), 993–997 (1989).10.1103/PhysRevB.40.993
|
[15] |
A. F. Goncharov, I. N. Makarenko, and S. M. Stishov, “Graphite at pressures up to 55 GPa: Optical properties and Raman spectra,” High Pressure Res. 4(1–6), 345–347 (1990).10.1080/08957959008246117
|
[16] |
T. Yagi, W. Utsumi, M.-a. Yamakata, T. Kikegawa, and O. Shimomura, “High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature,” Phys. Rev. B 46(10), 6031–6039 (1992).10.1103/PhysRevB.46.6031
|
[17] |
J. T. Wang, C. Chen, and Y. Kawazoe, “Low-temperature phase transformation from graphite to orthorhombic carbon,” Phys. Rev. Lett. 106(7), 075501 (2011).10.1103/PhysRevLett.106.075501
|
[18] |
K. Luo, B. Liu, W. Hu, X. Dong, Y. Wang, Q. Huang et al., “Coherent interfaces govern direct transformation from graphite to diamond,” Nature 607(7919), 486–491 (2022).10.1038/s41586-022-04863-2
|
[19] |
S. C. Zhu, X. Z. Yan, J. Liu, A. R. Oganov, and Q. Zhu, “A revisited mechanism of the graphite-to-diamond transition at high temperature,” Matter 3(3), 864–878 (2020).10.1016/j.matt.2020.05.013
|
[20] |
H. Sumiya, T. Irifune, A. Kurio, S. Sakamoto, and T. Inoue, “Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure,” J. Mater. Sci. 39(2), 445–450 (2004).10.1023/b:Jmsc.0000011496.15996.44
|
[21] |
H. Ohfuji, S. Okimoto, T. Kunimoto, F. Isobe, H. Sumiya, K. Komatsu, and T. Irifune, “Influence of graphite crystallinity on the microtexture of nano-polycrystalline diamond obtained by direct conversion,” Phys. Chem. Miner. 39(7), 543–552 (2012).10.1007/s00269-012-0510-3
|
[22] |
F. Isobe, H. Ohfuji, H. Sumiya, and T. Irifune, “Nanolayered diamond sintered compact obtained by direct conversion from highly oriented graphite under high pressure and high temperature,” J. Nanomater. 2013, 1–6.10.1155/2013/380165
|
[23] |
F. P. Bundy, “Direct conversion of graphite to diamond in static pressure apparatus,” J. Chem. Phys. 38(3), 631–643 (1963).10.1063/1.1733716
|
[24] |
X. Yuan, Y. Cheng, H. Tang, P. Wang, F. Liu, S. Han et al., “sp2-to-sp3 transitions in graphite during cold-compression,” Phys. Chem. Chem. Phys. 24(17), 10561–10566 (2022).10.1039/d2cp00178k
|
[25] |
H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res.: Solid Earth 91(B5), 4673–4676, (1986).10.1029/JB091iB05p04673
|
[26] |
D. Krishnamurti, “The Raman spectrum of diamond,” Proc. Indian Acad. Sci. - Sect. A 40(5), 211–216 (1954).10.1007/BF03047399
|
[27] |
V. Kvasnytsya and R. Wirth, “Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study,” Diamond Relat. Mater. 32, 7–16 (2013).10.1016/j.diamond.2012.11.010
|
[28] |
F. Ke, Y. Chen, K. Yin, J. Yan, H. Zhang, Z. Liu et al., “Large bandgap of pressurized trilayer graphene,” Proc. Natl. Acad. Sci. U. S. A. 116(19), 9186–9190 (2019).10.1073/pnas.1820890116
|
[29] |
M. Hanfland, H. Beister, and K. Syassen, “Graphite under pressure: Equation of state and first-order Raman modes,” Phys. Rev. B 39(17), 12598–12603 (1989).10.1103/PhysRevB.39.12598
|
[30] |
L. G. P. Martins, M. J. S. Matos, A. R. Paschoal, P. T. C. Freire, N. F. Andrade, A. L. Aguiar et al., “Raman evidence for pressure-induced formation of diamondene,” Nat. Commun. 8(1), 96 (2017).10.1038/s41467-017-00149-8
|
[31] |
H. Ohfuji, T. Irifune, K. D. Litasov, T. Yamashita, F. Isobe, V. P. Afanasiev, and N. P. Pokhilenko, “Natural occurrence of pure nano-polycrystalline diamond from impact crater,” Sci. Rep. 5, 014702 (2015).10.1038/srep14702
|
[32] |
J. P. Pinceaux, J. P. Maury, and J. M. Besson, “Solidification of helium, at room temperature under high pressure,” J. Phys. Lett. 40(13), 307–308 (1979).10.1051/jphyslet:019790040013030700
|
[33] |
X. Yin, Z. Kou, Z. Wang, T. Liu, A. Liang, M. Yang et al., “Micro-sized polycrystalline cubic boron nitride with properties comparable to nanocrystalline counterparts,” Ceram. Int. 46(7), 8806–8810 (2020).10.1016/j.ceramint.2019.12.120
|