Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Hesselbach P., Lütgert J., Bagnoud V., Belikov R., Humphries O., Lindqvist B., Schaumann G., Sokolov A., Tauschwitz A., Varentsov D., Weyrich K., Winkler B., Yu X., Zielbauer B., Kraus D., Riley D., Major Zs., Neumayer P.. Platform for laser-driven X-ray diagnostics of heavy-ion heated extreme states of matter[J]. Matter and Radiation at Extremes, 2025, 10(1): 017803. doi: 10.1063/5.0233548
Citation: Hesselbach P., Lütgert J., Bagnoud V., Belikov R., Humphries O., Lindqvist B., Schaumann G., Sokolov A., Tauschwitz A., Varentsov D., Weyrich K., Winkler B., Yu X., Zielbauer B., Kraus D., Riley D., Major Zs., Neumayer P.. Platform for laser-driven X-ray diagnostics of heavy-ion heated extreme states of matter[J]. Matter and Radiation at Extremes, 2025, 10(1): 017803. doi: 10.1063/5.0233548

Platform for laser-driven X-ray diagnostics of heavy-ion heated extreme states of matter

doi: 10.1063/5.0233548
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: p.hesselbach@gsi.de and p.neumayer@gsi.de
  • Received Date: 2024-08-15
  • Accepted Date: 2024-10-13
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • We report on commissioning experiments at the high-energy, high-temperature (HHT) target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany, combining for the first time intense pulses of heavy ions from the SIS18 synchrotron with high-energy laser pulses from the PHELIX laser facility. We demonstrate the use of X-ray diagnostic techniques based on intense laser-driven X-ray sources, which will allow probing of large samples volumetrically heated by the intense heavy-ion beams. A new target chamber as well as optical diagnostics for ion-beam characterization and fast pyrometric temperature measurements complement the experimental capabilities. This platform is designed for experiments at the future Facility for Antiproton and Ion Research in Europe GmbH (FAIR), where unprecedented ion-beam intensities will enable the generation of millimeter-sized samples under high-energy-density conditions.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    P. Hesselbach: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). J. Lütgert: Formal analysis (equal); Investigation (equal); Visualization (equal); Writing – review & editing (equal). V. Bagnoud: Conceptualization (equal); Investigation (equal). R. Belikov: Formal analysis (equal); Investigation (equal). O. Humphries: Investigation (equal). B. Lindqvist: Investigation (equal). G. Schaumann: Resources (equal). A. Sokolov: Formal analysis (equal). A. Tauschwitz: Investigation (equal). D. Varentsov: Investigation (equal). K. Weyrich: Investigation (equal). B. Winkler: Funding acquisition (equal); Resources (equal). X. Yu: Investigation (equal). B. Zielbauer: Investigation (equal). D. Kraus: Conceptualization (equal); Investigation (equal). D. Riley: Conceptualization (equal); Investigation (equal). Zs. Major: Conceptualization (equal); Investigation (equal); Supervision (equal); Writing – review & editing (equal). P. Neumayer: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer et al., “Ab initio equation of state data for hydrogen, helium, and water and the internal structure of jupiter,” Astrophys. J. 683, 1217–1228 (2008).10.1086/589806
    [2]
    J. Clérouin, V. Recoules, and F. Soubiran, “The advent of ab initio simulations of dense plasmas,” Contrib. Plasma Phys. 61, e202100095 (2021).10.1002/ctpp.202100095
    [3]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [4]
    M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471
    [5]
    J. E. Bailey, T. Nagayama, G. P. Loisel, G. A. Rochau, C. Blancard et al., “A higher-than-predicted measurement of iron opacity at solar interior temperatures,” Nature 517, 56–59 (2014).10.1038/nature14048
    [6]
    R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun et al., “Ramp compression of diamond to five terapascals,” Nature 511, 330–333 (2014).10.1038/nature13526
    [7]
    A. L. Kritcher, D. C. Swift, T. Döppner, B. Bachmann, L. X. Benedict et al., “A measurement of the equation of state of carbon envelopes of white dwarfs,” Nature 584, 51–54 (2020).10.1038/s41586-020-2535-y
    [8]
    A. Lazicki, D. McGonegle, J. R. Rygg, D. G. Braun, D. C. Swift et al., “Metastability of diamond ramp-compressed to 2 terapascals,” Nature 589, 532–535 (2021).10.1038/s41586-020-03140-4
    [9]
    S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung et al., “Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser,” Nature 482, 59–62 (2012).10.1038/nature10746
    [10]
    N. A. Tahir, P. Neumayer, A. Shutov, A. R. Piriz, I. V. Lomonosov et al., “Equation-of-state studies of high-energy-density matter using intense ion beams at the Facility for Antiprotons and Ion Research,” Contrib. Plasma Phys. 59, e201800143 (2019).10.1002/ctpp.201800143
    [11]
    P. Spiller, R. Balss, P. Bartolome, J. Blaurock, U. Blell et al., “The FAIR heavy ion synchrotron SIS100,” J. Instrum. 15, T12013 (2020).10.1088/1748-0221/15/12/t12013
    [12]
    M. Durante, P. Indelicato, B. Jonson, V. Koch, K. Langanke et al., “All the fun of the FAIR: Fundamental physics at the facility for antiproton and ion research,” Phys. Scr. 94, 033001 (2019).10.1088/1402-4896/aaf93f
    [13]
    T. Stöhlker, V. Bagnoud, K. Blaum, A. Blazevic, A. Bräuning-Demian et al., “APPA at FAIR: From fundamental to applied research,” Nucl. Instrum. Methods Phys. Res., Sect. B 365, 680–685 (2015).10.1016/j.nimb.2015.07.077
    [14]
    V. Mintsev, V. Kim, I. Lomonosov, D. Nikolaev, A. Ostrik et al., “Non‐ideal plasma and early experiments at FAIR: HIHEX‐ heavy ion heating and EXpansion,” Contrib. Plasma Phys. 56, 281–285 (2016).10.1002/ctpp.201500105
    [15]
    N. A. Tahir, T. Stöhlker, A. Shutov, I. V. Lomonosov, V. E. Fortov et al., “Ultrahigh compression of water using intense heavy ion beams: Laboratory planetary physics,” New J. Phys. 12, 073022 (2010).10.1088/1367-2630/12/7/073022
    [16]
    N. A. Tahir, I. V. Lomonosov, B. Borm, A. R. Piriz, A. Shutov et al., “Studies of the core conditions of the earth and super-earths using intense ion beams at FAIR,” Astrophys. J., Suppl. Ser. 232, 1 (2017).10.3847/1538-4365/aa813e
    [17]
    K. Schoenberg, V. Bagnoud, A. Blazevic, V. E. Fortov, D. O. Gericke et al., “High-energy-density-science capabilities at the facility for antiproton and ion research,” Phys. Plasmas 27, 043103 (2020).10.1063/1.5134846
    [18]
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).10.1016/j.nimb.2010.02.091
    [19]
    [20]
    D. Varentsov, O. Antonov, A. Bakhmutova, C. W. Barnes, A. Bogdanov et al., “Commissioning of the PRIOR proton microscope,” Rev. Sci. Instrum. 87, 023303 (2016); arXiv:1512.05644.10.1063/1.4941685
    [21]
    M. Schanz and D. Varentsov, “Design and commissioning of the PRIOR-II proton microscope,” Rev. Sci. Instrum. (in press) (2024).10.1063/5.0220086
    [22]
    Z. Major, U. Eisenbarth, B. Zielbauer, C. Brabetz, J. B. Ohland et al., “High-energy laser facility PHELIX at GSI: Latest advances and extended capabilities,” High Power Laser Sci. Eng. 12, e39 (2024).10.1017/hpl.2024.17
    [23]
    [24]
    D. Varentsov, A. D. Fertman, V. I. Turtikov, A. Ulrich, J. Wieser et al., “Transverse optical diagnostics for intense focused heavy ion beams,” Contrib. Plasma Phys. 48, 586–594 (2008).10.1002/ctpp.200810092
    [25]
    R. Singh, T. Reichert, and B. Walasek-Hoehne, “Optical transition radiation based transverse beam diagnostics for nonrelativistic ion beams,” Phys. Rev. Accel. Beams 25, 072801 (2022).10.1103/physrevaccelbeams.25.072801
    [26]
    R. Belikov, D. Merges, D. Varentsov, Z. Major, P. Neumayer et al., “Fast multi-wavelength pyrometer for dynamic temperature measurements,” Int. J. Thermophys. 45, 29 (2024).10.1007/s10765-023-03323-x
    [27]
    R. Hampf, J. Wieser, and A. Ulrich, “Light emission processes in the context of optical beam profile monitors,” Eur. Phys. J. D 77, 51 (2023).10.1140/epjd/s10053-023-00624-6
    [28]
    A. Kramida, Y. Ralchenko, and J. Reader, NIST Atomic Spectra Database (ver. 5.11), National Institute of Standards and Technology, Gaithersburg, MD, 2023, available at https://physics.nist.gov/asd (accessed 21 October 2024).
    [29]
    P. D. Desai, “Thermodynamic properties of iron and silicon,” J. Phys. Chem. Ref. Data 15, 967–983 (1986).10.1063/1.555761
    [30]
    J. W. Arblaster, “Thermodynamic properties of tantalum,” J. Phase Equilib. Diffus. 39, 255–272 (2018).10.1007/s11669-018-0627-2
    [31]
    J. W. Arblaster, “Thermodynamic properties of copper,” J. Phase Equilib. Diffus. 36, 422–444 (2015).10.1007/s11669-015-0399-x
    [32]
    I. V. Savchenko and S. V. Stankus, “Thermal conductivity and thermal diffusivity of tantalum in the temperature range from 293 to 1800 K,” Thermophys. Aeromech. 15, 679–682 (2008).10.1007/s11510-008-0017-z
    [33]
    J. Lütgert, P. Hesselbach, M. Schörner, V. Bagnoud, R. Belikov et al., “Temperature and structure measurements of heavy-ion-heated diamond using in situ X-ray diagnostics,” Matter Radiat. Extrem. 9, 047802 (2024).10.1063/5.0203005
    [34]
    J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers et al., “Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA,” Rev. Sci. Instrum. 78, 034903 (2007).10.1063/1.2712189
    [35]
    M. Koenig, A. Benuzzi-Mounaix, A. Ravasio, T. Vinci, N. Ozaki et al., “Progress in the study of warm dense matter,” Plasma Phys. Controlled Fusion 47, B441 (2005).10.1088/0741-3335/47/12B/S31
    [36]
    S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625–1663 (2009).10.1103/revmodphys.81.1625
    [37]
    A. Benuzzi-Mounaix, S. Mazevet, A. Ravasio, T. Vinci, A. Denoeud et al., “Progress in warm dense matter study with applications to planetology,” Phys. Scr. T161, 014060 (2014).10.1088/0031-8949/2014/T161/014060
    [38]
    K. Falk, C. L. Fryer, E. J. Gamboa, C. W. Greeff, H. M. Johns et al., “X-ray Thomson scattering measurement of temperature in warm dense carbon,” Plasma Phys. Controlled Fusion 59, 014050 (2017).10.1088/0741-3335/59/1/014050
    [39]
    K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6, e59 (2018).10.1017/hpl.2018.53
    [40]
    P. Rambo, J. Schwarz, M. Schollmeier, M. Geissel, I. Smith et al., “Sandia’s Z-backlighter laser facility,” Proc. SPIE 10014, 100140Z (2016).10.1117/12.2245271
    [41]
    B. Nagler, B. Arnold, G. Bouchard, R. F. Boyce, R. M. Boyce et al., “The matter in extreme conditions instrument at the Linac coherent light source,” J. Synchrotron Radiat. 22, 520–525 (2015).10.1107/s1600577515004865
    [42]
    U. Zastrau, K. Appel, C. Baehtz, O. Baehr, L. Batchelor et al., “The high energy density scientific instrument at the European XFEL,” J. Synchrotron Radiat. 28, 1393–1416 (2021).10.1107/s1600577521007335
    [43]
    T. Döppner, D. C. Swift, A. L. Kritcher, B. Bachmann, G. W. Collins et al., “Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave,” Phys. Rev. Lett. 121, 025001 (2018).10.1103/PhysRevLett.121.025001
    [44]
    D. H. Kalantar, J. F. Belak, G. W. Collins, J. D. Colvin, H. M. Davies et al., “Direct observation of the α−ε transition in shock-compressed iron via nanosecond X-ray diffraction,” Phys. Rev. Lett. 95, 075502 (2005).10.1103/PhysRevLett.95.075502
    [45]
    M. Millot, F. Coppari, J. R. Rygg, A. Correa Barrios, S. Hamel et al., “Nanosecond X-ray diffraction of shock-compressed superionic water ice,” Nature 569, 251–255 (2019).10.1038/s41586-019-1114-6
    [46]
    H. J. Lee, P. Neumayer, J. Castor, T. Döppner, R. W. Falcone et al., “X-ray thomson-scattering measurements of density and temperature in shock-compressed beryllium,” Phys. Rev. Lett. 102, 115001 (2009).10.1103/physrevlett.102.115001
    [47]
    E. García Saiz, G. Gregori, D. O. Gericke, J. Vorberger, B. Barbrel et al., “Probing warm dense lithium by inelastic X-ray scattering,” Nat. Phys. 4, 940–944 (2008).10.1038/nphys1103
    [48]
    A. Grolleau, F. Dorchies, N. Jourdain, K. Ta Phuoc, J. Gautier et al., “Femtosecond resolution of the nonballistic electron energy transport in warm dense copper,” Phys. Rev. Lett. 127, 275901 (2021).10.1103/physrevlett.127.275901
    [49]
    E. L. Dewald, R. Tommasini, A. Mackinnon, A. MacPhee, N. Meezan et al., “Capsule ablator inflight performance measurements via streaked radiography of ICF implosions on the NIF,” J. Phys.: Conf. Ser. 688, 012014 (2016).10.1088/1742-6596/688/1/012014
    [50]
    T. G. White, J. Vorberger, C. R. D. Brown, B. J. B. Crowley, P. Davis et al., “Observation of inhibited electron-ion coupling in strongly heated graphite,” Sci. Rep. 2, 889 (2012).10.1038/srep00889
    [51]
    S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann et al., “Observations of plasmons in warm dense matter,” Phys. Rev. Lett. 98, 065002 (2007).10.1103/physrevlett.98.065002
    [52]
    L. E. Ruggles, J. L. Porter, P. K. Rambo, W. W. Simpson, M. F. Vargas et al., “Measurements of 4-10 keV x-ray production with the Z-Beamlet laser,” Rev. Sci. Instrum. 74, 2206–2210 (2003).10.1063/1.1537854
    [53]
    H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3–12 (2005).10.1016/j.hedp.2005.07.001
    [54]
    M. Šmíd, X. Pan, and K. Falk, “X-ray spectrometer simulation code with a detailed support of mosaic crystals,” Comput. Phys. Commun. 262, 107811 (2021).10.1016/j.cpc.2020.107811
    [55]
    O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extrem. 4, 024201 (2019).10.1063/1.5086344
    [56]
    [57]
    I. Seki and K. Nagata, “Lattice constant of iron and austenite including its supersaturation phase of carbon,” ISIJ Int. 45, 1789–1794 (2005).10.2355/isijinternational.45.1789
    [58]
    [59]
    T. T. Böhlen, F. Cerutti, M. P. Chin, A. Fassò, A. Ferrari et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014).10.1016/j.nds.2014.07.049
    [60]
    [61]
    [62]
    N. A. Tahir, V. Bagnoud, P. Neumayer, A. R. Piriz, and S. A. Piriz, “Production of diamond using intense heavy ion beams at the FAIR facility and application to planetary physics,” Sci. Rep. 13, 1459 (2023).10.1038/s41598-023-28709-7
    [63]
    L. N. Latiyev, V. A. Petrov, V. Y. Chekhovskoy, and E. N. Shestakov, in Radiative Properties of Solid Materials, Reference Book, edited by A. Sheindlin (Energiya Publishing House, 1974), p. 237.
    [64]
    M. Leitner, W. Schröer, and G. Pottlacher, “Density of liquid tantalum and estimation of critical point data,” Int. J. Thermophys. 39, 124 (2018).10.1007/s10765-018-2439-3
    [65]
    H. Watanabe, M. Susa, H. Fukuyama, and K. Nagata, “Phase dependence (liquid/solid) of normal spectral emissivities of noble metals at melting points,” Int. J. Thermophys. 24, 223–237 (2003).10.1023/a:1022374501754
    [66]
    B. Wilthan, C. Cagran, G. Pottlacher, and E. Kaschnitz, “Normal spectral emissivity at 684.5 nm of the liquid binary system Fe–Ni,” Monatsh. fur Chem. 136, 1971–1976 (2005).10.1007/s00706-005-0387-7
    [67]
    H. Watanabe, M. Susa, H. Fukuyama, and K. Nagata, “Phase (liquid/solid) dependence of the normal spectral emissivity for iron, cobalt, and nickel at melting points,” Int. J. Thermophys. 24, 473–488 (2003).10.1023/a:1022924105951
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return