Citation: | Peng Yuan-Ao, Wang Han-Yu, Su Fu-Hai, Wang Pu, Xu Hai-An, Liu Lin, Yu Lun-Xuan, Howie Ross T., Xu Wan, Gregoryanz Eugene, Liu Xiao-Di. Synthesis of lutetium hydrides at high pressures[J]. Matter and Radiation at Extremes, 2025, 10(1): 017804. doi: 10.1063/5.0227283 |
[1] |
T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH3, HoH3, LuH3),” Solid State Commun. 133, 481–486 (2005).10.1016/j.ssc.2004.11.036
|
[2] |
T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part II. SmH3 and compressibility systematics,” Solid State Commun. 141, 302–305 (2007).10.1016/j.ssc.2006.06.045
|
[3] |
T. Palasyuk and M. Tkacz, “Pressure-induced structural phase transition in rare-earth trihydrides. Part III. Systematics: General and geometric approach,” Solid State Commun. 141, 354–358 (2007).10.1016/j.ssc.2006.10.004
|
[4] |
C. E. Holley, R. N. R. Mulford, F. H. Ellinger, W. C. Koehier, and W. H. Zachariasen, “The crystal structure of some rare earth hydrides,” J. Phys. Chem. 59, 1226–1228 (2002).10.1021/j150534a010
|
[5] |
I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33, e2006832 (2021).10.1002/adma.202006832
|
[6] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
|
[7] |
N. P. Salke, M. M. Davari Esfahani, Y. Zhang, I. A. Kruglov, J. Zhou et al., “Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice,” Nat. Commun. 10, 4453 (2019).10.1038/s41467-019-12326-y
|
[8] |
P. Tsuppayakorn-aek, U. Pinsook, W. Luo, R. Ahuja, and T. Bovornratanaraks, “Superconductivity of superhydride CeH10 under high pressure,” Mater. Res. Express 7, 086001 (2020).10.1088/2053-1591/ababc2
|
[9] |
R. Griessen, J. N. Huiberts, M. Kremers, A. T. M. van Gogh, N. J. Koeman et al., “Yttrium and lanthanum hydride films with switchable optical properties,” J. Alloys Compd. 253–254, 44–50 (1997).10.1016/s0925-8388(96)02891-5
|
[10] |
Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang et al., “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948
|
[11] |
P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
|
[12] |
A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8
|
[13] |
W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li et al., “High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar,” Phys. Rev. Lett. 127, 117001 (2021).10.1103/physrevlett.127.117001
|
[14] |
N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee et al., “Retracted article: Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 615, 244–250 (2023).10.1038/s41586-023-05742-0
|
[15] |
X. Ming, Y. J. Zhang, X. Zhu, Q. Li, C. He et al., “Absence of near-ambient superconductivity in LuH(2+/−x)Ny,” Nature 620, 72 (2023).10.1038/s41586-023-06162-w
|
[16] |
X. Xing, C. Wang, L. Yu, J. Xu, C. Zhang et al., “Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides,” Nat. Commun. 14, 5991 (2023).10.1038/s41467-023-41777-7
|
[17] |
D. Peng, Q. Zeng, F. Lan, Z. Xing, Y. Ding et al., “The near-room-temperature upsurge of electrical resistivity in Lu–H–N is not superconductivity, but a metal-to-poor-conductor transition,” Matter Radiat. Extremes 8, 058401 (2023).10.1063/5.0166430
|
[18] |
F. Xie, T. Lu, Z. Yu, Y. Wang, Z. Wang et al., “Lu–H–N phase diagram from first-principles calculations,” Chin. Phys. Lett. 40, 057401 (2023).10.1088/0256-307x/40/5/057401
|
[19] |
M. Liu, X. Liu, J. Li, J. Liu, Y. Sun et al., “Parent structures of near-ambient nitrogen-doped lutetium hydride superconductor,” Phys. Rev. B 108, L020102 (2023).10.1103/physrevb.108.l020102
|
[20] |
Y. Sun, F. Zhang, S. Wu, V. Antropov, and K. M. Ho, “Effect of nitrogen doping and pressure on the stability of LuH3,” Phys. Rev. B 108, L020101 (2023).10.1103/physrevb.108.l020101
|
[21] |
Z. Huo, D. Duan, T. Ma, Z. Zhang, Q. Jiang et al., “First-principles study on the conventional superconductivity of N-doped fcc-LuH3,” Matter Radiat. Extremes 8, 038402 (2023).10.1063/5.0151844
|
[22] |
W. Wu, Z. Zeng, and X. Wang, “Investigations of pressurized Lu–N–H materials by using the hybrid functional,” J. Phys. Chem. C 127, 20121–20127 (2023).10.1021/acs.jpcc.3c04454
|
[23] |
S. W. Kim, L. J. Conway, C. J. Pickard, G. L. Pascut, and B. Monserrat, “Microscopic theory of colour in lutetium hydride,” Nat. Commun. 14, 7360 (2023).10.1038/s41467-023-42983-z
|
[24] |
K. P. Hilleke, X. Y. Wang, D. B. Luo, N. S. Geng, B. S. Wang et al., “Structure, stability, and superconductivity of N-doped lutetium hydrides at kbar pressures,” Phys. Rev. B 108, 014511 (2023).10.1103/physrevb.108.014511
|
[25] |
J. Du, W. Sun, X. Li, and F. Peng, “Pressure-induced stability and superconductivity in LuH12 polyhydrides,” Phys. Chem. Chem. Phys. 25, 13320–13324 (2023).10.1039/d3cp00604b
|
[26] |
D. Dangić, P. Garcia-Goiricelaya, Y.-W. Fang, J. Ibañez Azpiroz, and I. Errea, “Ab initio study of the structural, vibrational, and optical properties of potential parent structures of nitrogen-doped lutetium hydride,” Phys. Rev. B 108, 064517 (2023).10.1103/physrevb.108.064517
|
[27] |
A. Denchfield, F. Belli, E. Zurek, H. Park, and R. J. Hemley, “Quantum stabilization and flat hydrogen-based bands of nitrogen-doped lutetium hydride,” Phys. Rev. B 110, 174110 (2024).10.1103/physrevb.110.174110
|
[28] |
Y.-W. Fang, D. Dangić, and I. Errea, “Assessing the feasibility of near-ambient conditions superconductivity in the Lu–N–H system,” Commun. Mater. 5, 61 (2024).10.1038/s43246-024-00500-9
|
[29] |
R. Lv, W. Tu, D. Shao, Y. Sun, and W. Lu, “Physical origin of color changes in lutetium hydride under pressure,” Chin. Phys. Lett. 40, 117401 (2023).10.1088/0256-307x/40/11/117401
|
[30] |
N. S. Pavlov, I. R. Shein, K. S. Pervakov, V. M. Pudalov, and I. A. Nekrasov, “Anatomy of the band structure of the newest apparent near-ambient superconductor LuH3−xNx,” JETP Lett. 118, 693–699 (2023).10.1134/s0021364023603172
|
[31] | |
[32] |
R. Lucrezi, P. P. Ferreira, M. Aichhorn, and C. Heil, “Temperature and quantum anharmonic lattice effects on stability and superconductivity in lutetium trihydride,” Nat. Commun. 15, 441 (2024).10.1038/s41467-023-44326-4
|
[33] |
C. Tresca, P. M. Forcella, A. Angeletti, L. Ranalli, C. Franchini et al., “Molecular hydrogen in the N-doped LuH3 system as a possible path to superconductivity,” Nat. Commun. 15, 7283 (2024).10.1038/s41467-024-51348-z
|
[34] |
X. Tao, A. Yang, S. Yang, Y. Quan, and P. Zhang, “Leading components and pressure-induced color changes in N-doped lutetium hydride,” Sci. Bull. 68, 1372–1378 (2023).10.1016/j.scib.2023.06.007
|
[35] |
B. Li, Y. Q. Yang, Y. X. Fan, C. Zhu, S. L. Liu et al., “Theoretical predictions on superconducting phase above room temperature in lutetium-beryllium hydrides at high pressures,” Chin. Phys. Lett. 40, 097402 (2023).10.1088/0256-307x/40/9/097402
|
[36] |
P. P. Ferreira, L. J. Conway, A. Cucciari, S. Di Cataldo, F. Giannessi et al., “Search for ambient superconductivity in the Lu–N–H system,” Nat. Commun. 14, 5367 (2023).10.1038/s41467-023-41005-2
|
[37] |
S. Cai, J. Guo, H. Y. Shu, L. X. Yang, P. Y. Wang et al., “No evidence of superconductivity in a compressed sample prepared from lutetium foil and H2/N2 gas mixture,” Matter Radiat. Extremes 8, 048001 (2023).10.1063/5.0153447
|
[38] |
Y. J. Zhang, X. Ming, Q. Li, X. Zhu, B. Zheng et al., “Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride,” Sci. China: Phys., Mech. Astron. 66, 287411 (2023).10.1007/s11433-023-2109-4
|
[39] |
X. Zhao, P. Shan, N. Wang, Y. Li, Y. Xu et al., “Pressure tuning of optical reflectivity in LuH2,” Sci. Bull. 68, 883–886 (2023).10.1016/j.scib.2023.04.009
|
[40] |
X. P. Ma, N. N. Wang, W. T. Wang, J. Z. Nie, W. L. Gao et al., “Microstructure and structural modulation of lutetium dihydride LuH2 as seen via transmission electron microscopy,” Scr. Mater. 245, 116022 (2024).10.1016/j.scriptamat.2024.116022
|
[41] |
J. Guo, S. Cai, D. Wang, H. Shu, L. Yang et al., “Robust magnetism against pressure in non-superconducting samples prepared from lutetium foil and H2/N2 gas mixture,” Chin. Phys. Lett. 40, 097401 (2023).10.1088/0256-307x/40/9/097401
|
[42] |
D. Wang, N. N. Wang, C. S. Zhang, C. S. Xia, W. C. Guo et al., “Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides,” Matter Radiat. Extremes 9, 037401 (2024).10.1063/5.0183701
|
[43] |
X. Li, Y. Wang, Y. Fu, S. A. T. Redfern, S. Jiang et al., “Stabilization of high-pressure phase of face-centered cubic lutetium trihydride at ambient conditions,” Adv. Sci. 11, e2401642 (2024).10.1002/advs.202401642
|
[44] |
D. Peng, Q. S. Zeng, F. J. Lan, Z. F. Xing, Z. D. Zeng et al., “Origin of the near-room temperature resistance transition in lutetium with H2/N2 gas mixture under high pressure,” Natl. Sci. Rev. 11, nwad337 (2023).10.1093/nsr/nwad337
|
[45] |
P. Li, J. Bi, S. Zhang, R. Cai, G. Su et al., “Transformation of hexagonal Lu to cubic LuH2+x single-crystalline films,” Chin. Phys. Lett. 40, 087401 (2023).10.1088/0256-307x/40/8/087401
|
[46] |
M. Shao, S. Chen, W. Chen, K. Zhang, X. Huang et al., “Superconducting ScH3 and LuH3 at megabar pressures,” Inorg. Chem. 60, 15330–15335 (2021).10.1021/acs.inorgchem.1c01960
|
[47] |
O. Moulding, S. Gallego Parra, Y. Gao, P. Toulemonde, G. Garbarino et al., “Pressure-induced formation of cubic lutetium hydrides derived from trigonal LuH3,” Phys. Rev. B 108, 214505 (2023).10.1103/physrevb.108.214505
|
[48] |
T. Scheler, M. Marques, Z. Konopkova, C. L. Guillaume, R. T. Howie et al., “High-pressure synthesis and characterization of iridium trihydride,” Phys. Rev. Lett. 111, 215503 (2013).10.1103/physrevlett.111.215503
|
[49] |
R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and E. Gregoryanz, “Mixed molecular and atomic phase of dense hydrogen,” Phys. Rev. Lett. 108, 125501 (2012).10.1103/physrevlett.108.125501
|
[50] |
N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani et al., “New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8,” Matter Radiat. Extremes 5, 018403 (2020).10.1063/1.5126038
|
[51] |
B. H. Toby and R. B. Von Dreele, “GSAS-II: The genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544–549 (2013).10.1107/s0021889813003531
|
[52] |
V. Petříček, L. Palatinus, J. Plášil, and M. Dušek, “JANA2020—A new version of the crystallographic computing system JANA,” Z. Kristallogr. Cryst. Mater. 238, 271–282 (2023).10.1515/zkri-2023-0005
|
[53] |
B. Kong, L. Zhang, X. R. Chen, T. X. Zeng, and L. C. Cai, “Structural relative stabilities and pressure-induced phase transitions for lanthanide trihydrides REH3 (RE = Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu),” Physica B 407, 2050–2057 (2012).10.1016/j.physb.2012.02.003
|
[54] |
H. Meng, T. Palasyuk, V. Drozd, and M. Tkacz, “Study of phase stability and isotope effect in dysprosium trihydride at high pressure,” J. Alloys Compd. 722, 946–952 (2017).10.1016/j.jallcom.2017.06.181
|
[55] |
C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Pressure Res. 35, 223–230 (2015).10.1080/08957959.2015.1059835
|