Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
An Xiangyan, Chen Min, Liu Jianglai, Sheng Zhengming, Zhang Jie. Modeling of axion and electromagnetic fields interaction in particle-in-cell simulations[J]. Matter and Radiation at Extremes, 2024, 9(6): 067204. doi: 10.1063/5.0226159
Citation: An Xiangyan, Chen Min, Liu Jianglai, Sheng Zhengming, Zhang Jie. Modeling of axion and electromagnetic fields interaction in particle-in-cell simulations[J]. Matter and Radiation at Extremes, 2024, 9(6): 067204. doi: 10.1063/5.0226159

Modeling of axion and electromagnetic fields interaction in particle-in-cell simulations

doi: 10.1063/5.0226159
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: minchen@sjtu.edu.cn
  • Received Date: 2024-06-29
  • Accepted Date: 2024-08-21
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • The axion, a theoretically well-motivated particle, has been searched for extensively via its hypothetical interactions with ordinary matter and fields. Recently, a new axion detection approach has been considered utilizing the ultra-intense electromagnetic fields produced by laser–plasma interactions. However, a detailed simulation tool has not hitherto been available to help understand the axion-coupled laser–plasma interactions in such a complex environment. In this paper, we report a custom-developed particle-in-cell (PIC) simulation method that incorporates the axion field, the electromagnetic fields, and their interactions. The axion field equation and modified Maxwell’s equations are numerically solved, with the axion-induced modulation of the electromagnetic field being treated as a first-order perturbation to handle the huge orders of magnitude difference between the two types of field. The simulation is benchmarked with well-studied effects such as axion–photon conversion and the propagation of an extremely weak laser pulse in a magnetized plasma. Such an extended PIC simulation provides a powerful tool to study axions under ultra-intense electromagnetic fields in the laboratory or in astrophysical processes.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Xiangyan An: Conceptualization (equal); Formal analysis (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Min Chen: Conceptualization (equal); Funding acquisition (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Jianglai Liu: Conceptualization (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Zhengming Sheng: Supervision (equal); Validation (equal); Writing – review & editing (equal). Jie Zhang: Supervision (equal); Validation (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    F. Wilczek, “Problem of strong P and T invariance in the presence of instantons,” Phys. Rev. Lett. 40, 279–282 (1978).10.1103/physrevlett.40.279
    [2]
    S. Weinberg, “A new light boson?,” Phys. Rev. Lett. 40, 223–226 (1978).10.1103/physrevlett.40.223
    [3]
    R. D. Peccei and H. R. Quinn, “CP conservation in the presence of pseudoparticles,” Phys. Rev. Lett. 38, 1440–1443 (1977).10.1103/physrevlett.38.1440
    [4]
    R. D. Peccei and H. R. Quinn, “Constraints imposed by CP conservation in the presence of pseudoparticles,” Phys. Rev. D 16, 1791–1797 (1977).10.1103/physrevd.16.1791
    [5]
    J. E. Kim and G. Carosi, “Axions and the strong CP problem,” Rev. Mod. Phys. 82, 557–601 (2010).10.1103/revmodphys.82.557
    [6]
    J. E. Kim, “Weak interaction singlet and strong CP invariance,” Phys. Rev. Lett. 43, 103 (1979).10.1103/physrevlett.43.103
    [7]
    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Can confinement ensure natural CP invariance of strong interactions?,” Nucl. Phys. B 166, 493–506 (1980).10.1016/0550-3213(80)90209-6
    [8]
    M. Dine, W. Fischler, and M. Srednicki, “A simple solution to the strong CP problem with a harmless axion,” Phys. Lett. B 104, 199–202 (1981).10.1016/0370-2693(81)90590-6
    [9]
    P. Svrcek and E. Witten, “Axions in string theory,” J. High Energy Phys. 06 051 (2006); arXiv:hep-th/0605206.10.1088/1126-6708/2006/06/051
    [10]
    G. B. Gelmini and M. Roncadelli, “Left-handed neutrino mass scale and spontaneously broken lepton number,” Phys. Lett. B 99, 411–415 (1981).10.1016/0370-2693(81)90559-1
    [11]
    B. Bellazzini, A. Mariotti, D. Redigolo, F. Sala, and J. Serra, “R-axion at colliders,” Phys. Rev. Lett. 119, 141804 (2017); arXiv:1702.02152 [hep-ph].10.1103/physrevlett.119.141804
    [12]
    Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, “Flaxion: A minimal extension to solve puzzles in the standard model,” J. High Energy Phys. 01, 096 (2017); arXiv:1612.05492 [hep-ph].10.1007/jhep01(2017)096
    [13]
    L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler, and J. Zupan, “Minimal axion model from flavor,” Phys. Rev. D 95, 095009 (2017); arXiv:1612.08040 [hep-ph].10.1103/physrevd.95.095009
    [14]
    I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102, 89–159 (2018); arXiv:1801.08127 [hep-ph].10.1016/j.ppnp.2018.05.003
    [15]
    J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the invisible axion,” Phys. Lett. B 120, 127–132 (1983).10.1016/0370-2693(83)90637-8
    [16]
    L. F. Abbott and P. Sikivie, “A cosmological bound on the invisible axion,” Phys. Lett. B 120, 133–136 (1983).10.1016/0370-2693(83)90638-x
    [17]
    M. Dine and W. Fischler, “The not-so-harmless axion,” Phys. Lett. B 120, 137–141 (1983).10.1016/0370-2693(83)90639-1
    [18]
    D. J. E. Marsh, “Axion cosmology,” Phys. Rep. 643, 1–79 (2016); arXiv:1510.07633 [astro-ph.CO].10.1016/j.physrep.2016.06.005
    [19]
    P. Sikivie, “Experimental tests of the invisible axion,” Phys. Rev. Lett. 51, 1415–1417 (1983);10.1103/physrevlett.51.1415
    [20]
    C. Bartram, T. Braine, E. Burns, R. Cervantes, N. Crisosto, N. Du, H. Korandla, G. Leum, P. Mohapatra, T. Nitta, L. Rosenberg, G. Rybka, J. Yang, J. Clarke, I. Siddiqi, A. Agrawal, A. Dixit, M. Awida, A. Chou, M. Hollister, S. Knirck, A. Sonnenschein, W. Wester, J. Gleason, A. Hipp, S. Jois, P. Sikivie, N. Sullivan, D. Tanner, E. Lentz, R. Khatiwada, G. Carosi, N. Robertson, N. Woollett, L. Duffy, C. Boutan, M. Jones, B. LaRoque, N. Oblath, M. Taubman, E. Daw, M. Perry, J. Buckley, C. Gaikwad, J. Hoffman, K. Murch, M. Goryachev, B. McAllister, A. Quiskamp, C. Thomson, M. Tobar, and ADMX Collaboration, “Search for invisible axion dark matter in the 3.3–4.2 μeV mass range,” Phys. Rev. Lett. 127, 261803 (2021).10.1103/physrevlett.127.261803
    [21]
    O. Kwon et al., “First results from an axion haloscope at CAPP around 10.7 μeV,” Phys. Rev. Lett. 126, 191802 (2021); arXiv:2012.10764 [hep-ex].10.1103/physrevlett.126.191802
    [22]
    J. L. Ouellet et al., “First results from ABRACADABRA-10 cm: A search for sub-μeV axion dark matter,” Phys. Rev. Lett. 122, 121802 (2019); arXiv:1810.12257 [hep-ex].10.1103/physrevlett.122.121802
    [23]
    CAST Collaboration, “New CAST limit on the axion–photon interaction,” Nat. Phys. 13, 584–590 (2017).10.1038/nphys4109
    [24]
    E. Armengaud et al., “Physics potential of the international axion observatory (IAXO),” J. Cosmol. Astropart. Phys. 2019, 047; arXiv:1904.09155 [hep-ph].10.1088/1475-7516/2019/06/047
    [25]
    J. W. Foster, Y. Kahn, O. Macias, Z. Sun, R. P. Eatough, V. I. Kondratiev, W. M. Peters, C. Weniger, and B. R. Safdi, “Green Bank and Effelsberg radio telescope searches for axion dark matter conversion in neutron star magnetospheres,” Phys. Rev. Lett. 125, 171301 (2020).10.1103/physrevlett.125.171301
    [26]
    T. D. Edwards, B. J. Kavanagh, L. Visinelli, and C. Weniger, “Transient radio signatures from neutron star encounters with QCD axion miniclusters,” Phys. Rev. Lett. 127, 131103 (2021).10.1103/physrevlett.127.131103
    [27]
    M. Buschmann, R. T. Co, C. Dessert, and B. R. Safdi, “Axion emission can explain a new hard X-ray excess from nearby isolated neutron stars,” Phys. Rev. Lett. 126, 021102 (2021).10.1103/physrevlett.126.021102
    [28]
    M. Xiao, P. Carenza, M. Giannotti, A. Mirizzi, K. M. Perez, O. Straniero, and B. W. Grefenstette, “Betelgeuse constraints on coupling between axionlike particles and electrons,” Phys. Rev. D 106, 123019 (2022); arXiv:2204.03121 [astro-ph.HE].10.1103/physrevd.106.123019
    [29]
    O. Halpern, “Scattering processes produced by electrons in negative energy states,” Phys. Rev. 44, 855–856 (1933).10.1103/physrev.44.855.2
    [30]
    E. Zavattini, G. Zavattini, G. Ruoso, E. Polacco, E. Milotti, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, and M. Bregant, “Experimental observation of optical rotation generated in vacuum by a magnetic field,” Phys. Rev. Lett. 96, 110406 (2006).10.1103/physrevlett.96.110406
    [31]
    R. Battesti, B. Pinto Da Souza, S. Batut, C. Robilliard, G. Bailly, C. Michel, M. Nardone, L. Pinard, O. Portugall, G. Trénec, J.-M. Mackowski, G. L. Rikken, J. Vigué, and C. Rizzo, “The BMV experiment: A novel apparatus to study the propagation of light in a transverse magnetic field,” Eur. Phys. J. D 46, 323–333 (2008).10.1140/epjd/e2007-00306-3
    [32]
    R. Cameron, G. Cantatore, A. Melissinos, G. Ruoso, Y. Semertzidis, H. Halama, D. Lazarus, A. Prodell, F. Nezrick, C. Rizzo, and E. Zavattini, “Search for nearly massless, weakly coupled particles by optical techniques,” Phys. Rev. D 47, 3707–3725 (1993).10.1103/physrevd.47.3707
    [33]
    S.-J. Chen, H.-H. Mei, and W.-T. Ni, “Q & A experiment to search for vacuum dichroism, pseudoscalar–photon interaction and millicharged fermions,” Mod. Phys. Lett. A 22, 2815–2831 (2007).10.1142/s0217732307025844
    [34]
    K. Ehret, M. Frede, S. Ghazaryan, M. Hildebrandt, E.-A. Knabbe, D. Kracht, A. Lindner, J. List, T. Meier, N. Meyer, D. Notz, J. Redondo, A. Ringwald, G. Wiedemann, and B. Willke, “New ALPS results on hidden-sector lightweights,” Phys. Lett. B 689, 149–155 (2010).10.1016/j.physletb.2010.04.066
    [35]
    R. Bähre et al., “Any light particle search II — Technical design report,” J. High Energy Phys. 8, T09001 (2013); arXiv:1302.5647 [physics.ins-det].10.1088/1748-0221/8/09/t09001
    [36]
    A. S. Chou, W. Wester, A. Baumbaugh, H. R. Gustafson, Y. Irizarry-Valle, P. O. Mazur, J. H. Steffen, R. Tomlin, X. Yang, and J. Yoo, “Search for axionlike particles using a variable-baseline photon-regeneration technique,” Phys. Rev. Lett. 100, 080402 (2008).10.1103/physrevlett.100.080402
    [37]
    A. Afanasev, O. K. Baker, K. B. Beard, G. Biallas, J. Boyce, M. Minarni, R. Ramdon, M. Shinn, and P. Slocum, “Experimental limit on optical-photon coupling to light neutral scalar bosons,” Phys. Rev. Lett. 101, 120401 (2008).10.1103/physrevlett.101.120401
    [38]
    P. Pugnat, L. Duvillaret, R. Jost, G. Vitrant, D. Romanini, A. Siemko, R. Ballou, B. Barbara, M. Finger, M. Finger, J. Hošek, M. Král, K. A. Meissner, M. Šulc, and J. Zicha, “Results from the OSQAR photon-regeneration experiment: No light shining through a wall,” Phys. Rev. D 78, 092003 (2008).10.1103/physrevd.78.092003
    [39]
    C. Robilliard, R. Battesti, M. Fouché, J. Mauchain, A.-M. Sautivet, F. Amiranoff, and C. Rizzo, “No ‘light shining through a wall’: Results from a photoregeneration experiment,” Phys. Rev. Lett. 99, 190403 (2007).10.1103/physrevlett.99.190403
    [40]
    V. Dinu, T. Heinzl, A. Ilderton, M. Marklund, and G. Torgrimsson, “Vacuum refractive indices and helicity flip in strong-field QED,” Phys. Rev. D 89, 125003 (2014).10.1103/physrevd.89.125003
    [41]
    B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Controlled Fusion 60, 044002 (2018).10.1088/1361-6587/aaa7fb
    [42]
    Y.-N. Dai, K. Z. Hatsagortsyan, C. H. Keitel, and Y.-Y. Chen, “Fermionic signal of vacuum polarization in strong laser fields,” Phys. Rev. D 110, 012008 (2024); arXiv:2401.11168 [hep-th].10.1103/physrevd.110.012008
    [43]
    J. T. Mendonça, H. Terças, and J. D. Rodrigues, “Axion excitation by intense laser fields in a plasma,” Phys. Scr. 95, 045601 (2020).10.1088/1402-4896/ab5ab5
    [44]
    J. Mendonça, J. Rodrigues, and H. Terças, “Axion production in unstable magnetized plasmas,” Phys. Rev. D 101, 051701 (2020).10.1103/physrevd.101.051701
    [45]
    S. Huang, B. Shen, Z. Bu, X. Zhang, L. Ji, and S. Zhai, “Axion-like particle generation in laser-plasma interaction,” Phys. Scr. 97, 105303 (2022).10.1088/1402-4896/ac8b6b
    [46]
    S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser–plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939
    [47]
    C. G. R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900
    [48]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, “A laser–plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963
    [49]
    X. An, M. Chen, S. Weng, Z. Sheng, and J. Zhang, “Bragg scattering induced laser deflection and electron injection in x-ray laser driven wakefield acceleration in crystals,” Phys. Rev. Res. 4, L042034 (2022).10.1103/physrevresearch.4.l042034
    [50]
    A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, and E. Wallin, “Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments,” Phys. Rev. E 92, 023305 (2015).10.1103/physreve.92.023305
    [51]
    H.-H. Song, W.-M. Wang, and Y.-T. Li, “Dense polarized positrons from laser-irradiated foil targets in the QED regime,” Phys. Rev. Lett. 129, 035001 (2022).10.1103/physrevlett.129.035001
    [52]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [53]
    L. Visinelli, “Axion-electromagnetic waves,” Mod. Phys. Lett. A 28, 1350162 (2013).10.1142/s0217732313501629
    [54]
    H. Terças, J. Rodrigues, and J. Mendonça, “Axion-plasmon polaritons in strongly magnetized plasmas,” Phys. Rev. Lett. 120, 181803 (2018).10.1103/physrevlett.120.181803
    [55]
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
    [56]
    P.-J. Charpin, K. Ardaneh, B. Morel, R. Giust, and F. Courvoisier, “Simulation of laser-induced ionization in wide bandgap solid dielectrics with a particle-in-cell code,” Opt. Express 32, 10175–10189 (2024).10.1364/oe.511590
    [57]
    J. Vyskočil, O. Klimo, and S. Weber, “Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets,” Plasma Phys. Controlled Fusion 60, 054013 (2018).10.1088/1361-6587/aab4c3
    [58]
    J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).10.1006/jcph.1994.1159
    [59]
    J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).10.1002/1098-2760(20001205)27:5<334::aid-mop14>3.0.co;2-a
    [60]
    A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376 (2008).10.1364/oe.16.011376
    [61]
    P. Arias, J. Jaeckel, J. Redondo, and A. Ringwald, “Optimizing light-shining-through-a-wall experiments for axion and other weakly interacting slim particle searches,” Phys. Rev. D 82, 115018 (2010).10.1103/physrevd.82.115018
    [62]
    A. R. Zhitnitskij, “On possible suppression of the axion-hadron interactions,” Sov. J. Nucl. Phys. 31, 260 (1980).
    [63]
    F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer International Publishing, Cham, 2016).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (44) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return