Citation: | An Xiangyan, Chen Min, Liu Jianglai, Sheng Zhengming, Zhang Jie. Modeling of axion and electromagnetic fields interaction in particle-in-cell simulations[J]. Matter and Radiation at Extremes, 2024, 9(6): 067204. doi: 10.1063/5.0226159 |
[1] |
F. Wilczek, “Problem of strong P and T invariance in the presence of instantons,” Phys. Rev. Lett. 40, 279–282 (1978).10.1103/physrevlett.40.279
|
[2] |
S. Weinberg, “A new light boson?,” Phys. Rev. Lett. 40, 223–226 (1978).10.1103/physrevlett.40.223
|
[3] |
R. D. Peccei and H. R. Quinn, “CP conservation in the presence of pseudoparticles,” Phys. Rev. Lett. 38, 1440–1443 (1977).10.1103/physrevlett.38.1440
|
[4] |
R. D. Peccei and H. R. Quinn, “Constraints imposed by CP conservation in the presence of pseudoparticles,” Phys. Rev. D 16, 1791–1797 (1977).10.1103/physrevd.16.1791
|
[5] |
J. E. Kim and G. Carosi, “Axions and the strong CP problem,” Rev. Mod. Phys. 82, 557–601 (2010).10.1103/revmodphys.82.557
|
[6] |
J. E. Kim, “Weak interaction singlet and strong CP invariance,” Phys. Rev. Lett. 43, 103 (1979).10.1103/physrevlett.43.103
|
[7] |
M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Can confinement ensure natural CP invariance of strong interactions?,” Nucl. Phys. B 166, 493–506 (1980).10.1016/0550-3213(80)90209-6
|
[8] |
M. Dine, W. Fischler, and M. Srednicki, “A simple solution to the strong CP problem with a harmless axion,” Phys. Lett. B 104, 199–202 (1981).10.1016/0370-2693(81)90590-6
|
[9] |
P. Svrcek and E. Witten, “Axions in string theory,” J. High Energy Phys. 06 051 (2006); arXiv:hep-th/0605206.10.1088/1126-6708/2006/06/051
|
[10] |
G. B. Gelmini and M. Roncadelli, “Left-handed neutrino mass scale and spontaneously broken lepton number,” Phys. Lett. B 99, 411–415 (1981).10.1016/0370-2693(81)90559-1
|
[11] |
B. Bellazzini, A. Mariotti, D. Redigolo, F. Sala, and J. Serra, “R-axion at colliders,” Phys. Rev. Lett. 119, 141804 (2017); arXiv:1702.02152 [hep-ph].10.1103/physrevlett.119.141804
|
[12] |
Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, “Flaxion: A minimal extension to solve puzzles in the standard model,” J. High Energy Phys. 01, 096 (2017); arXiv:1612.05492 [hep-ph].10.1007/jhep01(2017)096
|
[13] |
L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler, and J. Zupan, “Minimal axion model from flavor,” Phys. Rev. D 95, 095009 (2017); arXiv:1612.08040 [hep-ph].10.1103/physrevd.95.095009
|
[14] |
I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102, 89–159 (2018); arXiv:1801.08127 [hep-ph].10.1016/j.ppnp.2018.05.003
|
[15] |
J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the invisible axion,” Phys. Lett. B 120, 127–132 (1983).10.1016/0370-2693(83)90637-8
|
[16] |
L. F. Abbott and P. Sikivie, “A cosmological bound on the invisible axion,” Phys. Lett. B 120, 133–136 (1983).10.1016/0370-2693(83)90638-x
|
[17] |
M. Dine and W. Fischler, “The not-so-harmless axion,” Phys. Lett. B 120, 137–141 (1983).10.1016/0370-2693(83)90639-1
|
[18] |
D. J. E. Marsh, “Axion cosmology,” Phys. Rep. 643, 1–79 (2016); arXiv:1510.07633 [astro-ph.CO].10.1016/j.physrep.2016.06.005
|
[19] |
P. Sikivie, “Experimental tests of the invisible axion,” Phys. Rev. Lett. 51, 1415–1417 (1983);10.1103/physrevlett.51.1415
|
[20] |
C. Bartram, T. Braine, E. Burns, R. Cervantes, N. Crisosto, N. Du, H. Korandla, G. Leum, P. Mohapatra, T. Nitta, L. Rosenberg, G. Rybka, J. Yang, J. Clarke, I. Siddiqi, A. Agrawal, A. Dixit, M. Awida, A. Chou, M. Hollister, S. Knirck, A. Sonnenschein, W. Wester, J. Gleason, A. Hipp, S. Jois, P. Sikivie, N. Sullivan, D. Tanner, E. Lentz, R. Khatiwada, G. Carosi, N. Robertson, N. Woollett, L. Duffy, C. Boutan, M. Jones, B. LaRoque, N. Oblath, M. Taubman, E. Daw, M. Perry, J. Buckley, C. Gaikwad, J. Hoffman, K. Murch, M. Goryachev, B. McAllister, A. Quiskamp, C. Thomson, M. Tobar, and ADMX Collaboration, “Search for invisible axion dark matter in the 3.3–4.2 μeV mass range,” Phys. Rev. Lett. 127, 261803 (2021).10.1103/physrevlett.127.261803
|
[21] |
O. Kwon et al., “First results from an axion haloscope at CAPP around 10.7 μeV,” Phys. Rev. Lett. 126, 191802 (2021); arXiv:2012.10764 [hep-ex].10.1103/physrevlett.126.191802
|
[22] |
J. L. Ouellet et al., “First results from ABRACADABRA-10 cm: A search for sub-μeV axion dark matter,” Phys. Rev. Lett. 122, 121802 (2019); arXiv:1810.12257 [hep-ex].10.1103/physrevlett.122.121802
|
[23] |
CAST Collaboration, “New CAST limit on the axion–photon interaction,” Nat. Phys. 13, 584–590 (2017).10.1038/nphys4109
|
[24] |
E. Armengaud et al., “Physics potential of the international axion observatory (IAXO),” J. Cosmol. Astropart. Phys. 2019, 047; arXiv:1904.09155 [hep-ph].10.1088/1475-7516/2019/06/047
|
[25] |
J. W. Foster, Y. Kahn, O. Macias, Z. Sun, R. P. Eatough, V. I. Kondratiev, W. M. Peters, C. Weniger, and B. R. Safdi, “Green Bank and Effelsberg radio telescope searches for axion dark matter conversion in neutron star magnetospheres,” Phys. Rev. Lett. 125, 171301 (2020).10.1103/physrevlett.125.171301
|
[26] |
T. D. Edwards, B. J. Kavanagh, L. Visinelli, and C. Weniger, “Transient radio signatures from neutron star encounters with QCD axion miniclusters,” Phys. Rev. Lett. 127, 131103 (2021).10.1103/physrevlett.127.131103
|
[27] |
M. Buschmann, R. T. Co, C. Dessert, and B. R. Safdi, “Axion emission can explain a new hard X-ray excess from nearby isolated neutron stars,” Phys. Rev. Lett. 126, 021102 (2021).10.1103/physrevlett.126.021102
|
[28] |
M. Xiao, P. Carenza, M. Giannotti, A. Mirizzi, K. M. Perez, O. Straniero, and B. W. Grefenstette, “Betelgeuse constraints on coupling between axionlike particles and electrons,” Phys. Rev. D 106, 123019 (2022); arXiv:2204.03121 [astro-ph.HE].10.1103/physrevd.106.123019
|
[29] |
O. Halpern, “Scattering processes produced by electrons in negative energy states,” Phys. Rev. 44, 855–856 (1933).10.1103/physrev.44.855.2
|
[30] |
E. Zavattini, G. Zavattini, G. Ruoso, E. Polacco, E. Milotti, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, and M. Bregant, “Experimental observation of optical rotation generated in vacuum by a magnetic field,” Phys. Rev. Lett. 96, 110406 (2006).10.1103/physrevlett.96.110406
|
[31] |
R. Battesti, B. Pinto Da Souza, S. Batut, C. Robilliard, G. Bailly, C. Michel, M. Nardone, L. Pinard, O. Portugall, G. Trénec, J.-M. Mackowski, G. L. Rikken, J. Vigué, and C. Rizzo, “The BMV experiment: A novel apparatus to study the propagation of light in a transverse magnetic field,” Eur. Phys. J. D 46, 323–333 (2008).10.1140/epjd/e2007-00306-3
|
[32] |
R. Cameron, G. Cantatore, A. Melissinos, G. Ruoso, Y. Semertzidis, H. Halama, D. Lazarus, A. Prodell, F. Nezrick, C. Rizzo, and E. Zavattini, “Search for nearly massless, weakly coupled particles by optical techniques,” Phys. Rev. D 47, 3707–3725 (1993).10.1103/physrevd.47.3707
|
[33] |
S.-J. Chen, H.-H. Mei, and W.-T. Ni, “Q & A experiment to search for vacuum dichroism, pseudoscalar–photon interaction and millicharged fermions,” Mod. Phys. Lett. A 22, 2815–2831 (2007).10.1142/s0217732307025844
|
[34] |
K. Ehret, M. Frede, S. Ghazaryan, M. Hildebrandt, E.-A. Knabbe, D. Kracht, A. Lindner, J. List, T. Meier, N. Meyer, D. Notz, J. Redondo, A. Ringwald, G. Wiedemann, and B. Willke, “New ALPS results on hidden-sector lightweights,” Phys. Lett. B 689, 149–155 (2010).10.1016/j.physletb.2010.04.066
|
[35] |
R. Bähre et al., “Any light particle search II — Technical design report,” J. High Energy Phys. 8, T09001 (2013); arXiv:1302.5647 [physics.ins-det].10.1088/1748-0221/8/09/t09001
|
[36] |
A. S. Chou, W. Wester, A. Baumbaugh, H. R. Gustafson, Y. Irizarry-Valle, P. O. Mazur, J. H. Steffen, R. Tomlin, X. Yang, and J. Yoo, “Search for axionlike particles using a variable-baseline photon-regeneration technique,” Phys. Rev. Lett. 100, 080402 (2008).10.1103/physrevlett.100.080402
|
[37] |
A. Afanasev, O. K. Baker, K. B. Beard, G. Biallas, J. Boyce, M. Minarni, R. Ramdon, M. Shinn, and P. Slocum, “Experimental limit on optical-photon coupling to light neutral scalar bosons,” Phys. Rev. Lett. 101, 120401 (2008).10.1103/physrevlett.101.120401
|
[38] |
P. Pugnat, L. Duvillaret, R. Jost, G. Vitrant, D. Romanini, A. Siemko, R. Ballou, B. Barbara, M. Finger, M. Finger, J. Hošek, M. Král, K. A. Meissner, M. Šulc, and J. Zicha, “Results from the OSQAR photon-regeneration experiment: No light shining through a wall,” Phys. Rev. D 78, 092003 (2008).10.1103/physrevd.78.092003
|
[39] |
C. Robilliard, R. Battesti, M. Fouché, J. Mauchain, A.-M. Sautivet, F. Amiranoff, and C. Rizzo, “No ‘light shining through a wall’: Results from a photoregeneration experiment,” Phys. Rev. Lett. 99, 190403 (2007).10.1103/physrevlett.99.190403
|
[40] |
V. Dinu, T. Heinzl, A. Ilderton, M. Marklund, and G. Torgrimsson, “Vacuum refractive indices and helicity flip in strong-field QED,” Phys. Rev. D 89, 125003 (2014).10.1103/physrevd.89.125003
|
[41] |
B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Controlled Fusion 60, 044002 (2018).10.1088/1361-6587/aaa7fb
|
[42] |
Y.-N. Dai, K. Z. Hatsagortsyan, C. H. Keitel, and Y.-Y. Chen, “Fermionic signal of vacuum polarization in strong laser fields,” Phys. Rev. D 110, 012008 (2024); arXiv:2401.11168 [hep-th].10.1103/physrevd.110.012008
|
[43] |
J. T. Mendonça, H. Terças, and J. D. Rodrigues, “Axion excitation by intense laser fields in a plasma,” Phys. Scr. 95, 045601 (2020).10.1088/1402-4896/ab5ab5
|
[44] |
J. Mendonça, J. Rodrigues, and H. Terças, “Axion production in unstable magnetized plasmas,” Phys. Rev. D 101, 051701 (2020).10.1103/physrevd.101.051701
|
[45] |
S. Huang, B. Shen, Z. Bu, X. Zhang, L. Ji, and S. Zhai, “Axion-like particle generation in laser-plasma interaction,” Phys. Scr. 97, 105303 (2022).10.1088/1402-4896/ac8b6b
|
[46] |
S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser–plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939
|
[47] |
C. G. R. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900
|
[48] |
J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, “A laser–plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963
|
[49] |
X. An, M. Chen, S. Weng, Z. Sheng, and J. Zhang, “Bragg scattering induced laser deflection and electron injection in x-ray laser driven wakefield acceleration in crystals,” Phys. Rev. Res. 4, L042034 (2022).10.1103/physrevresearch.4.l042034
|
[50] |
A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, and E. Wallin, “Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments,” Phys. Rev. E 92, 023305 (2015).10.1103/physreve.92.023305
|
[51] |
H.-H. Song, W.-M. Wang, and Y.-T. Li, “Dense polarized positrons from laser-irradiated foil targets in the QED regime,” Phys. Rev. Lett. 129, 035001 (2022).10.1103/physrevlett.129.035001
|
[52] |
T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|
[53] |
L. Visinelli, “Axion-electromagnetic waves,” Mod. Phys. Lett. A 28, 1350162 (2013).10.1142/s0217732313501629
|
[54] |
H. Terças, J. Rodrigues, and J. Mendonça, “Axion-plasmon polaritons in strongly magnetized plasmas,” Phys. Rev. Lett. 120, 181803 (2018).10.1103/physrevlett.120.181803
|
[55] |
C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
|
[56] |
P.-J. Charpin, K. Ardaneh, B. Morel, R. Giust, and F. Courvoisier, “Simulation of laser-induced ionization in wide bandgap solid dielectrics with a particle-in-cell code,” Opt. Express 32, 10175–10189 (2024).10.1364/oe.511590
|
[57] |
J. Vyskočil, O. Klimo, and S. Weber, “Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets,” Plasma Phys. Controlled Fusion 60, 054013 (2018).10.1088/1361-6587/aab4c3
|
[58] |
J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).10.1006/jcph.1994.1159
|
[59] |
J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).10.1002/1098-2760(20001205)27:5<334::aid-mop14>3.0.co;2-a
|
[60] |
A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376 (2008).10.1364/oe.16.011376
|
[61] |
P. Arias, J. Jaeckel, J. Redondo, and A. Ringwald, “Optimizing light-shining-through-a-wall experiments for axion and other weakly interacting slim particle searches,” Phys. Rev. D 82, 115018 (2010).10.1103/physrevd.82.115018
|
[62] |
A. R. Zhitnitskij, “On possible suppression of the axion-hadron interactions,” Sov. J. Nucl. Phys. 31, 260 (1980).
|
[63] |
F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer International Publishing, Cham, 2016).
|