Citation: | Rosmej Frank B., Fontes Christopher J.. Hollow ion atomic structure and X-ray emission in dense hot plasmas[J]. Matter and Radiation at Extremes, 2024, 9(6): 067202. doi: 10.1063/5.0226041 |
[1] |
J. P. Briand, L. de Billy, P. Charles, S. Essabaa, P. Briand, R. Geller, J. P. Desclaux, S. Bliman, and C. Ristori, “Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface,” Phys. Rev. Lett. 65, 159 (1990).10.1103/physrevlett.65.159
|
[2] |
E. D. Donets, “Electron beam ion sources and associated physics at JINR,” Nucl. Instrum. Methods Phys. Res., Sect. B 9, 522 (1985).10.1016/0168-583x(85)90359-3
|
[3] |
H. Winter and F. Aumayr, “Hollow atoms,” J. Phys. B: At., Mol. Opt. Phys. 32, R39 (1999).10.1088/0953-4075/32/7/005
|
[4] |
H. Winter, “Collisions of atoms and ions with surfaces under grazing incidence,” Phys. Rep. 367, 387 (2002).10.1016/s0370-1573(02)00010-8
|
[5] |
Atomic Physics with Heavy Ions: Hollow Ions, Springer Series on Atomic, Optical, and Plasma Physics, edited by B. Ban-d’Etat and J. P. Briand (Springer, Cham, 1999), Vol. 26, ISBN: 978-3-642-58580-7.
|
[6] |
I. A. Armour, J. D. Silver, E. Träbert, and B. C. Fawcett, “X-ray spectra and satellite classification of foil-excited Mg and Al,” J. Phys. B: At. Mol. Phys. 13, 2701 (1980).10.1088/0022-3700/13/14/010
|
[7] |
Y. Aglitskiy, T. Lehecka, A. Deniz, J. Hardgrove, J. Seely, C. Brown, U. Feldman, C. Pawley, K. Gerber, S. Bodner, S. Obenschain, R. Lehmberg, E. McLean, M. Pronko, J. Sethian, J. Stamper, A. Schmitt, C. Sullivan, G. Holland, and M. Laming, “X-ray emission from plasmas created by smoothed KrF laser irradiation,” Phys. Plasmas 3, 3438 (1996).10.1063/1.871496
|
[8] |
A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, I. Yu. Skobelev, A. Osterheld, S. A. Pikuz, A. M. Urnov, J. Abdallah, R. E. H. Clark, J. Cohen, R. P. Jonson, G. A. Kyrala, M. D. Wilke, A. Maksimchuk, D. Umstadter, N. Nantel, R. Doron, E. Behar, P. Mandelbaum, J. J. Schwob, J. Dubau, and F. B. Rosmej, “High-resolved x-ray spectra of hollow atoms in a femtosecond laser-produced solid plasma,” Phys. Scr. T80, 536 (1999).10.1238/physica.topical.080a00536
|
[9] |
I. Yu. Skobelev, A. Ya. Faenov, T. A. Pikuz, and V. E. Fortov, “Spectra of hollow ions in an ultradense laser plasma,” Phys.-Usp. 55, 47 (2012).10.3367/ufne.0182.201201c.0049
|
[10] |
J. Colgan, J. Abdallah, Jr., A. Ya. Faenov, S. A. Pikuz, E. Wagenaars, N. Booth, O. Culfa, R. J. Dance, R. G. Evans, R. J. Gray, T. Kaempfer, K. L. Lancaster, P. McKenna, A. L. Rossall, I. Yu. Skobelev, K. S. Schulze, I. Uschmann, A. G. Zhidkov, and N. C. Woolsey, “Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime,” Phys. Rev. Lett. 110, 125001 (2013).10.1103/physrevlett.110.125001
|
[11] |
F. B. Rosmej, D. H. H. Hoffmann, W. Süß, M. Geißel, O. N. Rosmej, A. Ya. Faenov, T. A. Pikuz, T. Auguste, P. D’Oliveira, S. Hulin, P. Monot, J. E. Hansen, and G. Verbookhaven, “High resolution x-ray imaging spectroscopy diagnostic of hollow ions in dense plasmas,” Nucl. Instrum. Methods Phys. Res., Sect. A 464, 257 (2001).10.1016/S0168-9002(01)00045-6
|
[12] |
F. B. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozières, M. Smid, and O. Renner, “Exotic x-ray emission from dense plasmas,” J. Phys. B: At., Mol. Opt. Phys. 48, 224005 (2015).10.1088/0953-4075/48/22/224005
|
[13] |
S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung, C. R. D. Brown, T. Burian, J. Chalupsky, R. W. Falcone, C. Graves, V. Hajkova, A. Higginbotham, L. Juha, J. Krzywinski, H. J. Lee, M. Messerschmidt, C. D. Murphy, Y. Ping, A. Scherz, W. Schlotter, S. Toleikis, J. J. Turner, L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R. W. Lee, P. A. Heimann, B. Nagler, and J. S. Wark, “Creation and diagnosis of a solid-density plasma with an x-ray free-electron laser,” Nature 482, 59 (2012).10.1038/nature10746
|
[14] |
R. Diamant, S. Haotari, K. Hämäläinen, C. C. Kao, and M. Deutsch, “Cu Khα12 hypersatellites: Suprathreshold evolution of a hollow-atom x-ray spectrum,” Phys. Rev. A 62, 052519 (2000).10.1103/PhysRevA.62.052519
|
[15] |
M. C. Martins, A. M. Costa, J. P. Santos, F. Parente, and P. Indelicato, “Relativistic calculation of two-electron one-photon and hypersatellite transition energies for 12 ≤ Z ≤ 30 elements,” J. Phys. B.: At., Mol. Opt. Phys. 37, 3785 (2004).10.1088/0953-4075/37/19/001
|
[16] |
J. Abdallah, Jr., I. Yu. Skobelev, A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, F. Flora, S. Bollanti, P. Di Lazzaro, T. Letardi, E. Burattini, A. Grilli, A. Reale, L. Palladino, G. Tomassetti, A. Scafati, and L. Reale, “Spectra of multiply charged hollow ions in the plasma produced by a short-wavelength nanosecond laser,” Quantum Electron. 30, 694 (2000).10.1070/qe2000v030n08abeh001793
|
[17] |
A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, S. A. Pikuz, Jr., R. Kodama, and V. E. Fortov, “Diagnostics of warm dense matter by high-resolution x-ray spectroscopy of hollow ions,” Laser Part. Beams 33, 27 (2015).10.1017/s0263034614000743
|
[18] |
H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997), ISBN: 0-521-45504-9.
|
[19] |
O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
|
[20] |
V. S. Lisitsa, Atoms in Plasmas, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Cham, 1994), Vol. 14, ISBN: 978-3-642-78726-3.
|
[21] |
F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Plasma Atomic Physics, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Cham, 2021), Vol. 104, ISBN: 978-3-030-05966-8.
|
[22] |
F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, A. I. Magunov, I. Yu. Skobelev, T. Auguste, P. D’Oliveira, S. Hulin, P. Monot, N. E. Andreev, M. V. Chegotov, and M. E. Veisman, “Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas,” J. Phys. B: At., Mol. Opt. Phys. 32, L107 (1999).10.1088/0953-4075/32/5/031
|
[23] |
F. B. Rosmej, V. S. Lisitsa, R. Schott, E. Dalimier, D. Riley, A. Delserieys, O. Renner, and E. Krousky, “Charge-exchange-driven x-ray emission from highly ionized plasma jets,” Europhys. Lett. 76, 815 (2006).10.1209/epl/i2006-10362-7
|
[24] |
F. B. Rosmej, H. R. Griem, R. C. Elton, V. L. Jacobs, J. A. Cobble, A. Ya. Faenov, T. A. Pikuz, M. Geißel, D. H. H. Hoffmann, W. Süß, D. Uskov, V. P. Shevelko, and R. C. Mancini, “Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas,” Phys. Rev. E 66, 056402 (2002).10.1103/physreve.66.056402
|
[25] |
F. B. Rosmej and R. W. Lee, “Hollow ion emission driven by pulsed intense x-ray fields,” Europhys. Lett. 77, 24001 (2007).10.1209/0295-5075/77/24001
|
[26] |
F. B. Rosmej, R. W. Lee, and D. H. G. Schneider, “A 10 fs x-ray emission switch driven by an intense x-ray free electron laser,” High Energy Density Phys. 3, 218 (2007).10.1016/j.hedp.2007.02.028
|
[27] |
F. B. Rosmej, “Hot electron x-ray diagnostics,” J. Phys. B: At., Mol. Opt. Phys. 30, L819 (1997).10.1088/0953-4075/30/22/007
|
[28] |
R. Mewe, “Simplified model for ionization and recombination in a hydrogenic plasma with resonance radiation trapping,” Z. Naturforsch. A 25, 1798 (1970).10.1515/zna-1970-1204
|
[29] |
R. G. Athay and C. L. Hyder, “Coronal ionization by two-step collision processes,” Astrophys. J. 137, 21 (1963).10.1086/147481
|
[30] | |
[31] | |
[32] | |
[33] |
L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “Femtosecond electronic response of atoms to ultra-intense x-rays,” Nature 466, 56 (2010).10.1038/nature09177
|
[34] |
Q. Y. van den Berg, E. V. Fernandez-Tello, T. Burian, J. Chalupsky, H.-K. Chung, O. Ciricosta, G. L. Dakovski, V. Hajkova, P. Hollebon, L. Juha, J. Krzywinski, R. W. Lee, M. P. Minitti, T. Preston, A. G. de la Varga, V. Vozda, U. Zastrau, J. S. Wark, P. Velarde, and S. M. Vinko, “Clocking femtosecond collisional dynamics via resonant x-ray spectroscopy,” Phys. Rev. Lett. 120, 055002 (2018).10.1103/physrevlett.120.055002
|
[35] |
F. B. Rosmej, “A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas,” Europhys. Lett. 55, 472 (2001).10.1209/epl/i2001-00439-9
|
[36] |
F. B. Rosmej, “X-ray emission spectroscopy and diagnostics of nonequilibrium fusion and laser-produced plasmas,” in Handbook for Highly Charged Ion Spectroscopic Research (CRC Press, Taylor & Francis Group, New York, 2012), ISBN: 978-1-4200-7904-3.
|
[37] |
E. Galtier, F. B. Rosmej, T. Dzelzainis, D. Riley, F. Y. Khattak, P. Heimann, R. W. Lee, A. J. Nelson, S. M. Vinko, T. Whitcher, J. S. Wark, T. Tschentscher, S. Toleikis, R. R. Fäustlin, R. Sobierajski, M. Jurek, L. Juha, J. Chalupsky, V. Hajkova, M. Kozlova, J. Krzywinski, and B. Nagler, “Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-eV free-electron-laser pulses,” Phys. Rev. Lett. 106, 164801 (2011).10.1103/physrevlett.106.164801
|
[38] |
F. B. Rosmej and O. N. Rosmej, “Transient formation of forbidden lines,” J. Phys. B: At., Mol. Opt. Phys. 29, L359 (1996).10.1088/0953-4075/29/9/002
|
[39] |
B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects,” Phys. Plasmas 27, 063303 (2020).10.1063/5.0011193
|
[40] |
D. R. Inglis and E. Teller, “Ionic depression of series limits in one-electron spectra,” Astrophys. J. 90, 439 (1939).10.1086/144118
|
[41] |
A. Unsöld, “Zur Berechnung der Zustandssummen für Atome und Ionen in einem teilweise ionisierten Gas,” Z. Astrophys. 24, 355 (1948).
|
[42] |
G. B. Zimmermann and R. M. Moore, “Pressure ionization in laser fusion target simulations,” J. Quant. Spectrosc. Radiat. Transfer 23, 517 (1980).10.1016/0022-4073(80)90055-2
|
[43] |
D. Mihalas, W. Däppen, and D. G. Hummer, “The equation of state for stellar envelopes. II. Algorithm and selected results,” Astrophys. J. 331, 815 (1988).10.1086/166601
|
[44] |
D. Salzman, Atomic Physics in Hot Plasmas, International Series of Monographs on Physics (Oxford University Press, 1998), ISBN: 0-19-510930-9.
|
[45] |
G. Massacrier and J. Dubeau, “A theoretical approach to N-electron ionic structure under dense plasma conditions: I. Blue and red shift,” J. Phys. B: At., Mol. Opt. Phys. 23, 2459S (1990).10.1088/0953-4075/23/13/033
|
[46] |
T. Blenski and K. Ishikawa, “Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formula in the relativistic Pauli approximation,” Phys. Rev. E 51, 4869 (1995).10.1103/physreve.51.4869
|
[47] |
I. Shimamura and T. Fujimoto, “State densities and ionization equilibrium of atoms in dense plasmas,” Phys. Rev. A 42, 2346 (1990).10.1103/physreva.42.2346
|
[48] |
N. Y. Orlov, “Ion model of a hot dense plasma,” Laser Part. Beams 15, 627 (1997).10.1017/s0263034600011198
|
[49] |
X. Li and F. B. Rosmej, “Spin-dependent energy-level crossings in highly charged ions due to dense plasma environments,” Phys. Rev. A 82, 022503 (2010).10.1103/physreva.82.022503
|
[50] |
R. Piron and T. Blenski, “Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb,” Phys. Rev. E 83, 026403 (2011).10.1103/physreve.83.026403
|
[51] |
S.-K. Son, R. Thiele, Z. Jurek, B. Ziaja, and R. Santra, “Quantum-mechanical calculation of ionization-potential lowering in dense plasmas,” Phys. Rev. X 4, 031004 (2014).10.1103/physrevx.4.031004
|
[52] |
M. Belkhiri, C. J. Fontes, and M. Poirier, “Influence of the plasma environment on atomic structure using an ion-sphere model,” Phys. Rev. A 92, 032501 (2015).10.1103/physreva.92.032501
|
[53] |
G. Massacrier, M. Böhme, J. Vorberger, F. Soubiran, and B. Militzer, “Reconciling ionization energies and band gaps of warm dense matter derived with ab initio simulations and average atom models,” Phys. Rev. Res. 3, 023026 (2021).10.1103/physrevresearch.3.023026
|
[54] |
R. Piron, “Atomic models of dense plasmas, applications, and current challenges,” Atoms 12, 26 (2024).10.3390/atoms12040026
|
[55] |
R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).
|
[56] |
F. B. Rosmej, J. Phys. B: At., Mol. Opt. Phys. 51, 09LT01 (2018) (Letter).10.1088/1361-6455/aab80f
|
[57] |
R. D. Deslattes, E. G. Kessler, Jr., P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: New approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).10.1103/revmodphys.75.35
|
[58] | |
[59] |
X. Li and F. B. Rosmej, “Analytical approach to level delocalization and line shifts in finite temperature dense plasmas,” Phys. Lett. A 384, 126478 (2020).10.1016/j.physleta.2020.126478
|
[60] |
X. Li, F. B. Rosmej, V. S. Lisitsa, and V. A. Astapenko, “An analytical plasma screening potential based on the self-consistent-field ion-sphere model,” Phys. Plasmas 26, 033301 (2019).10.1063/1.5055689
|
[61] |
Z. Chen, Y. Tian, Y. Yin, Y. Qi, G. Zhao et al., “Theoretical determination of level delocalizations, plasma shifts and radiative properties of fusion relevant Ni XXII in finite temperature dense plasmas using a generalized analytical b-potential,” J. Quant. Spectrosc. Radiat. Transfer 266, 107570 (2021).10.1016/j.jqsrt.2021.107570
|
[62] |
Z. B. Chen, P.-F. Liu, H.-Y. Sun, Y.-Y. Qi, G.-P. Zhao, X.-Z. Shen, L.-G. Jiao, K. Ma, K. Wang, and X.-D. Li, “Development of various methods to the investigation of the spectral properties and collision dynamics of H-like ions taking place in dense and hot plasma environments,” Int. J. Quantum Chem. 122, 101002 (2021).10.1002/qua.26842
|
[63] |
D. Dawra, M. Dimri, A. K. Singh, A. K. S. Jha, R. K. Pandey, R. Sharma, and M. Mohan, “Influence of strongly coupled plasma environment on photoionization of H-like O7+ ion,” Phys. Plasmas 28, 112706 (2021).10.1063/5.0055265
|
[64] |
K. Ma, C. Chen, Y. Chu, Z. Jiao, and Z. B. Chen, “Theoretical calculations on the relativistic corrections and photoionization cross sections for hydrogenlike ions in finite temperature dense plasmas,” Few-Body Syst. 63, 69 (2022).10.1007/s00601-022-01768-8
|
[65] |
A. K. S. Jha, M. Dimri, D. Dawra, and M. Mohan, “A study of the atomic processes of highly charged ions embedded in dense plasma,” Atoms 11, 158 (2023).10.3390/atoms11120158
|
[66] |
N. K. Shivankar, A. K. S. Jha, M. Dimri, D. Dawra, and M. Mohan, “Effect of dense plasma environment and external magnetic field on atomic structure and radiative properties of Ar XVII,” J. Quant. Spectrosc. Radiat. Transfer 321, 108991 (2024).10.1016/j.jqsrt.2024.108991
|
[67] |
B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Generalized atomic processes for interaction of intense femtosecond XUV- and x-ray radiation with solids,” Europhys. Lett. 108, 53001 (2014).10.1209/0295-5075/108/53001
|
[68] |
S. M. Vinko, O. Ciricosta, and J. S. Wark, “Density functional theory calculations of continuum lowering in strongly coupled plasmas,” Nat. Commun. 5, 3533 (2014).10.1038/ncomms4533
|
[69] |
O. Ciricosta, S. M. Vinko, B. Barbrel, D. S. Rackstraw, T. R. Preston, T. Burian, J. Chalupsky, B. I. Cho, H.-K. Chung, G. L. Dakovski, K. Engelhorn, V. Hájková, P. Heimann, M. Holmes, L. Juha, J. Krzywinski, R. W. Lee, S. Toleikis, J. J. Turner, U. Zastrau, and J. S. Wark, “Measurements of continuum lowering in solid-density plasmas created from elements and compounds,” Nat. Commun. 7, 11713 (2016).10.1038/ncomms11713
|
[70] |
S. X. Hu, “Continuum lowering and fermi-surface rising in strongly coupled and degenerate plasmas,” Phys. Rev. Lett. 119, 065001 (2017).10.1103/physrevlett.119.065001
|
[71] |
S. Hansen, E. C. Harding, P. F. Knapp, M. R. Gomez, T. Nagayama, and J. E. Bailey, “Changes in the electronic structure of highly compressed iron revealed by x-ray fluorescence lines and absorption edges,” High Energy Density Phys. 24, 39 (2017).10.1016/j.hedp.2017.07.002
|
[72] |
B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Atomic kinetics for isochoric heating of solid aluminum under short intense XUV free electron laser irradiation,” High Energy Density Phys. 15, 22 (2015).10.1016/j.hedp.2015.03.007
|
[73] |
G. Ecker and W. Kröll, “Lowering of the ionization energy for a plasma in thermodynamic equilibrium,” Phys. Fluids 6, 62 (1963).10.1063/1.1724509
|
[74] |
J. Stewart and K. Pyatt, “Lowering of ionization potentials in plasmas,” Astrophys. J. 144, 1203 (1966).10.1086/148714
|
[75] |
F. B. Rosmej, L. A. Vainshtein, V. A. Astapenko, and V. S. Lisitsa, “Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells,” Matter Radiat. Extremes 5, 064202 (2020).10.1063/5.0022751
|