Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Rosmej Frank B., Fontes Christopher J.. Hollow ion atomic structure and X-ray emission in dense hot plasmas[J]. Matter and Radiation at Extremes, 2024, 9(6): 067202. doi: 10.1063/5.0226041
Citation: Rosmej Frank B., Fontes Christopher J.. Hollow ion atomic structure and X-ray emission in dense hot plasmas[J]. Matter and Radiation at Extremes, 2024, 9(6): 067202. doi: 10.1063/5.0226041

Hollow ion atomic structure and X-ray emission in dense hot plasmas

doi: 10.1063/5.0226041
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: frank.rosmej@sorbonne-universite.fr and cjf@lanl.gov
  • Received Date: 2024-06-28
  • Accepted Date: 2024-08-20
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • Hollow ion X-ray emission is of great interest in high-energy-density research, since negligible opacity allows studies from the interior of very dense objects. In this paper, ionization potential depressions of the isoelectronic sequences for single and double K-shell vacancies are obtained from a pure ab initio multiconfiguration Hartree–Fock simulation including exact exchange terms and finite temperature dense plasma effects. It is demonstrated that the simultaneous representation of these ab initio data in the form of a map of hollow ion X-ray transition energies enables identification of important steps in the matter evolution and ionization dynamics. Mapping along the isoelectronic sequence as a function of the pumping energy of a X-ray free electron laser also enables visualization of the impact of ionization potential depression on the pathways of hollow ion formation.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Both authors contributed equally to this work.
    Frank B. Rosmej: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Christopher J. Fontes: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    J. P. Briand, L. de Billy, P. Charles, S. Essabaa, P. Briand, R. Geller, J. P. Desclaux, S. Bliman, and C. Ristori, “Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface,” Phys. Rev. Lett. 65, 159 (1990).10.1103/physrevlett.65.159
    [2]
    E. D. Donets, “Electron beam ion sources and associated physics at JINR,” Nucl. Instrum. Methods Phys. Res., Sect. B 9, 522 (1985).10.1016/0168-583x(85)90359-3
    [3]
    H. Winter and F. Aumayr, “Hollow atoms,” J. Phys. B: At., Mol. Opt. Phys. 32, R39 (1999).10.1088/0953-4075/32/7/005
    [4]
    H. Winter, “Collisions of atoms and ions with surfaces under grazing incidence,” Phys. Rep. 367, 387 (2002).10.1016/s0370-1573(02)00010-8
    [5]
    Atomic Physics with Heavy Ions: Hollow Ions, Springer Series on Atomic, Optical, and Plasma Physics, edited by B. Ban-d’Etat and J. P. Briand (Springer, Cham, 1999), Vol. 26, ISBN: 978-3-642-58580-7.
    [6]
    I. A. Armour, J. D. Silver, E. Träbert, and B. C. Fawcett, “X-ray spectra and satellite classification of foil-excited Mg and Al,” J. Phys. B: At. Mol. Phys. 13, 2701 (1980).10.1088/0022-3700/13/14/010
    [7]
    Y. Aglitskiy, T. Lehecka, A. Deniz, J. Hardgrove, J. Seely, C. Brown, U. Feldman, C. Pawley, K. Gerber, S. Bodner, S. Obenschain, R. Lehmberg, E. McLean, M. Pronko, J. Sethian, J. Stamper, A. Schmitt, C. Sullivan, G. Holland, and M. Laming, “X-ray emission from plasmas created by smoothed KrF laser irradiation,” Phys. Plasmas 3, 3438 (1996).10.1063/1.871496
    [8]
    A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, I. Yu. Skobelev, A. Osterheld, S. A. Pikuz, A. M. Urnov, J. Abdallah, R. E. H. Clark, J. Cohen, R. P. Jonson, G. A. Kyrala, M. D. Wilke, A. Maksimchuk, D. Umstadter, N. Nantel, R. Doron, E. Behar, P. Mandelbaum, J. J. Schwob, J. Dubau, and F. B. Rosmej, “High-resolved x-ray spectra of hollow atoms in a femtosecond laser-produced solid plasma,” Phys. Scr. T80, 536 (1999).10.1238/physica.topical.080a00536
    [9]
    I. Yu. Skobelev, A. Ya. Faenov, T. A. Pikuz, and V. E. Fortov, “Spectra of hollow ions in an ultradense laser plasma,” Phys.-Usp. 55, 47 (2012).10.3367/ufne.0182.201201c.0049
    [10]
    J. Colgan, J. Abdallah, Jr., A. Ya. Faenov, S. A. Pikuz, E. Wagenaars, N. Booth, O. Culfa, R. J. Dance, R. G. Evans, R. J. Gray, T. Kaempfer, K. L. Lancaster, P. McKenna, A. L. Rossall, I. Yu. Skobelev, K. S. Schulze, I. Uschmann, A. G. Zhidkov, and N. C. Woolsey, “Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime,” Phys. Rev. Lett. 110, 125001 (2013).10.1103/physrevlett.110.125001
    [11]
    F. B. Rosmej, D. H. H. Hoffmann, W. Süß, M. Geißel, O. N. Rosmej, A. Ya. Faenov, T. A. Pikuz, T. Auguste, P. D’Oliveira, S. Hulin, P. Monot, J. E. Hansen, and G. Verbookhaven, “High resolution x-ray imaging spectroscopy diagnostic of hollow ions in dense plasmas,” Nucl. Instrum. Methods Phys. Res., Sect. A 464, 257 (2001).10.1016/S0168-9002(01)00045-6
    [12]
    F. B. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozières, M. Smid, and O. Renner, “Exotic x-ray emission from dense plasmas,” J. Phys. B: At., Mol. Opt. Phys. 48, 224005 (2015).10.1088/0953-4075/48/22/224005
    [13]
    S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung, C. R. D. Brown, T. Burian, J. Chalupsky, R. W. Falcone, C. Graves, V. Hajkova, A. Higginbotham, L. Juha, J. Krzywinski, H. J. Lee, M. Messerschmidt, C. D. Murphy, Y. Ping, A. Scherz, W. Schlotter, S. Toleikis, J. J. Turner, L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R. W. Lee, P. A. Heimann, B. Nagler, and J. S. Wark, “Creation and diagnosis of a solid-density plasma with an x-ray free-electron laser,” Nature 482, 59 (2012).10.1038/nature10746
    [14]
    R. Diamant, S. Haotari, K. Hämäläinen, C. C. Kao, and M. Deutsch, “Cu Khα12 hypersatellites: Suprathreshold evolution of a hollow-atom x-ray spectrum,” Phys. Rev. A 62, 052519 (2000).10.1103/PhysRevA.62.052519
    [15]
    M. C. Martins, A. M. Costa, J. P. Santos, F. Parente, and P. Indelicato, “Relativistic calculation of two-electron one-photon and hypersatellite transition energies for 12 ≤ Z ≤ 30 elements,” J. Phys. B.: At., Mol. Opt. Phys. 37, 3785 (2004).10.1088/0953-4075/37/19/001
    [16]
    J. Abdallah, Jr., I. Yu. Skobelev, A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, F. Flora, S. Bollanti, P. Di Lazzaro, T. Letardi, E. Burattini, A. Grilli, A. Reale, L. Palladino, G. Tomassetti, A. Scafati, and L. Reale, “Spectra of multiply charged hollow ions in the plasma produced by a short-wavelength nanosecond laser,” Quantum Electron. 30, 694 (2000).10.1070/qe2000v030n08abeh001793
    [17]
    A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, S. A. Pikuz, Jr., R. Kodama, and V. E. Fortov, “Diagnostics of warm dense matter by high-resolution x-ray spectroscopy of hollow ions,” Laser Part. Beams 33, 27 (2015).10.1017/s0263034614000743
    [18]
    H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997), ISBN: 0-521-45504-9.
    [19]
    O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
    [20]
    V. S. Lisitsa, Atoms in Plasmas, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Cham, 1994), Vol. 14, ISBN: 978-3-642-78726-3.
    [21]
    F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Plasma Atomic Physics, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Cham, 2021), Vol. 104, ISBN: 978-3-030-05966-8.
    [22]
    F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, A. I. Magunov, I. Yu. Skobelev, T. Auguste, P. D’Oliveira, S. Hulin, P. Monot, N. E. Andreev, M. V. Chegotov, and M. E. Veisman, “Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas,” J. Phys. B: At., Mol. Opt. Phys. 32, L107 (1999).10.1088/0953-4075/32/5/031
    [23]
    F. B. Rosmej, V. S. Lisitsa, R. Schott, E. Dalimier, D. Riley, A. Delserieys, O. Renner, and E. Krousky, “Charge-exchange-driven x-ray emission from highly ionized plasma jets,” Europhys. Lett. 76, 815 (2006).10.1209/epl/i2006-10362-7
    [24]
    F. B. Rosmej, H. R. Griem, R. C. Elton, V. L. Jacobs, J. A. Cobble, A. Ya. Faenov, T. A. Pikuz, M. Geißel, D. H. H. Hoffmann, W. Süß, D. Uskov, V. P. Shevelko, and R. C. Mancini, “Charge-exchange-induced two-electron satellite transitions from autoionizing levels in dense plasmas,” Phys. Rev. E 66, 056402 (2002).10.1103/physreve.66.056402
    [25]
    F. B. Rosmej and R. W. Lee, “Hollow ion emission driven by pulsed intense x-ray fields,” Europhys. Lett. 77, 24001 (2007).10.1209/0295-5075/77/24001
    [26]
    F. B. Rosmej, R. W. Lee, and D. H. G. Schneider, “A 10 fs x-ray emission switch driven by an intense x-ray free electron laser,” High Energy Density Phys. 3, 218 (2007).10.1016/j.hedp.2007.02.028
    [27]
    F. B. Rosmej, “Hot electron x-ray diagnostics,” J. Phys. B: At., Mol. Opt. Phys. 30, L819 (1997).10.1088/0953-4075/30/22/007
    [28]
    R. Mewe, “Simplified model for ionization and recombination in a hydrogenic plasma with resonance radiation trapping,” Z. Naturforsch. A 25, 1798 (1970).10.1515/zna-1970-1204
    [29]
    R. G. Athay and C. L. Hyder, “Coronal ionization by two-step collision processes,” Astrophys. J. 137, 21 (1963).10.1086/147481
    [30]
    [31]
    [32]
    [33]
    L. Young, E. P. Kanter, B. Krässig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. Reis, J. D. Bozek, C. Bostedt, and M. Messerschmidt, “Femtosecond electronic response of atoms to ultra-intense x-rays,” Nature 466, 56 (2010).10.1038/nature09177
    [34]
    Q. Y. van den Berg, E. V. Fernandez-Tello, T. Burian, J. Chalupsky, H.-K. Chung, O. Ciricosta, G. L. Dakovski, V. Hajkova, P. Hollebon, L. Juha, J. Krzywinski, R. W. Lee, M. P. Minitti, T. Preston, A. G. de la Varga, V. Vozda, U. Zastrau, J. S. Wark, P. Velarde, and S. M. Vinko, “Clocking femtosecond collisional dynamics via resonant x-ray spectroscopy,” Phys. Rev. Lett. 120, 055002 (2018).10.1103/physrevlett.120.055002
    [35]
    F. B. Rosmej, “A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas,” Europhys. Lett. 55, 472 (2001).10.1209/epl/i2001-00439-9
    [36]
    F. B. Rosmej, “X-ray emission spectroscopy and diagnostics of nonequilibrium fusion and laser-produced plasmas,” in Handbook for Highly Charged Ion Spectroscopic Research (CRC Press, Taylor & Francis Group, New York, 2012), ISBN: 978-1-4200-7904-3.
    [37]
    E. Galtier, F. B. Rosmej, T. Dzelzainis, D. Riley, F. Y. Khattak, P. Heimann, R. W. Lee, A. J. Nelson, S. M. Vinko, T. Whitcher, J. S. Wark, T. Tschentscher, S. Toleikis, R. R. Fäustlin, R. Sobierajski, M. Jurek, L. Juha, J. Chalupsky, V. Hajkova, M. Kozlova, J. Krzywinski, and B. Nagler, “Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-eV free-electron-laser pulses,” Phys. Rev. Lett. 106, 164801 (2011).10.1103/physrevlett.106.164801
    [38]
    F. B. Rosmej and O. N. Rosmej, “Transient formation of forbidden lines,” J. Phys. B: At., Mol. Opt. Phys. 29, L359 (1996).10.1088/0953-4075/29/9/002
    [39]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects,” Phys. Plasmas 27, 063303 (2020).10.1063/5.0011193
    [40]
    D. R. Inglis and E. Teller, “Ionic depression of series limits in one-electron spectra,” Astrophys. J. 90, 439 (1939).10.1086/144118
    [41]
    A. Unsöld, “Zur Berechnung der Zustandssummen für Atome und Ionen in einem teilweise ionisierten Gas,” Z. Astrophys. 24, 355 (1948).
    [42]
    G. B. Zimmermann and R. M. Moore, “Pressure ionization in laser fusion target simulations,” J. Quant. Spectrosc. Radiat. Transfer 23, 517 (1980).10.1016/0022-4073(80)90055-2
    [43]
    D. Mihalas, W. Däppen, and D. G. Hummer, “The equation of state for stellar envelopes. II. Algorithm and selected results,” Astrophys. J. 331, 815 (1988).10.1086/166601
    [44]
    D. Salzman, Atomic Physics in Hot Plasmas, International Series of Monographs on Physics (Oxford University Press, 1998), ISBN: 0-19-510930-9.
    [45]
    G. Massacrier and J. Dubeau, “A theoretical approach to N-electron ionic structure under dense plasma conditions: I. Blue and red shift,” J. Phys. B: At., Mol. Opt. Phys. 23, 2459S (1990).10.1088/0953-4075/23/13/033
    [46]
    T. Blenski and K. Ishikawa, “Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formula in the relativistic Pauli approximation,” Phys. Rev. E 51, 4869 (1995).10.1103/physreve.51.4869
    [47]
    I. Shimamura and T. Fujimoto, “State densities and ionization equilibrium of atoms in dense plasmas,” Phys. Rev. A 42, 2346 (1990).10.1103/physreva.42.2346
    [48]
    N. Y. Orlov, “Ion model of a hot dense plasma,” Laser Part. Beams 15, 627 (1997).10.1017/s0263034600011198
    [49]
    X. Li and F. B. Rosmej, “Spin-dependent energy-level crossings in highly charged ions due to dense plasma environments,” Phys. Rev. A 82, 022503 (2010).10.1103/physreva.82.022503
    [50]
    R. Piron and T. Blenski, “Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb,” Phys. Rev. E 83, 026403 (2011).10.1103/physreve.83.026403
    [51]
    S.-K. Son, R. Thiele, Z. Jurek, B. Ziaja, and R. Santra, “Quantum-mechanical calculation of ionization-potential lowering in dense plasmas,” Phys. Rev. X 4, 031004 (2014).10.1103/physrevx.4.031004
    [52]
    M. Belkhiri, C. J. Fontes, and M. Poirier, “Influence of the plasma environment on atomic structure using an ion-sphere model,” Phys. Rev. A 92, 032501 (2015).10.1103/physreva.92.032501
    [53]
    G. Massacrier, M. Böhme, J. Vorberger, F. Soubiran, and B. Militzer, “Reconciling ionization energies and band gaps of warm dense matter derived with ab initio simulations and average atom models,” Phys. Rev. Res. 3, 023026 (2021).10.1103/physrevresearch.3.023026
    [54]
    R. Piron, “Atomic models of dense plasmas, applications, and current challenges,” Atoms 12, 26 (2024).10.3390/atoms12040026
    [55]
    R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).
    [56]
    F. B. Rosmej, J. Phys. B: At., Mol. Opt. Phys. 51, 09LT01 (2018) (Letter).10.1088/1361-6455/aab80f
    [57]
    R. D. Deslattes, E. G. Kessler, Jr., P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: New approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).10.1103/revmodphys.75.35
    [58]
    [59]
    X. Li and F. B. Rosmej, “Analytical approach to level delocalization and line shifts in finite temperature dense plasmas,” Phys. Lett. A 384, 126478 (2020).10.1016/j.physleta.2020.126478
    [60]
    X. Li, F. B. Rosmej, V. S. Lisitsa, and V. A. Astapenko, “An analytical plasma screening potential based on the self-consistent-field ion-sphere model,” Phys. Plasmas 26, 033301 (2019).10.1063/1.5055689
    [61]
    Z. Chen, Y. Tian, Y. Yin, Y. Qi, G. Zhao et al., “Theoretical determination of level delocalizations, plasma shifts and radiative properties of fusion relevant Ni XXII in finite temperature dense plasmas using a generalized analytical b-potential,” J. Quant. Spectrosc. Radiat. Transfer 266, 107570 (2021).10.1016/j.jqsrt.2021.107570
    [62]
    Z. B. Chen, P.-F. Liu, H.-Y. Sun, Y.-Y. Qi, G.-P. Zhao, X.-Z. Shen, L.-G. Jiao, K. Ma, K. Wang, and X.-D. Li, “Development of various methods to the investigation of the spectral properties and collision dynamics of H-like ions taking place in dense and hot plasma environments,” Int. J. Quantum Chem. 122, 101002 (2021).10.1002/qua.26842
    [63]
    D. Dawra, M. Dimri, A. K. Singh, A. K. S. Jha, R. K. Pandey, R. Sharma, and M. Mohan, “Influence of strongly coupled plasma environment on photoionization of H-like O7+ ion,” Phys. Plasmas 28, 112706 (2021).10.1063/5.0055265
    [64]
    K. Ma, C. Chen, Y. Chu, Z. Jiao, and Z. B. Chen, “Theoretical calculations on the relativistic corrections and photoionization cross sections for hydrogenlike ions in finite temperature dense plasmas,” Few-Body Syst. 63, 69 (2022).10.1007/s00601-022-01768-8
    [65]
    A. K. S. Jha, M. Dimri, D. Dawra, and M. Mohan, “A study of the atomic processes of highly charged ions embedded in dense plasma,” Atoms 11, 158 (2023).10.3390/atoms11120158
    [66]
    N. K. Shivankar, A. K. S. Jha, M. Dimri, D. Dawra, and M. Mohan, “Effect of dense plasma environment and external magnetic field on atomic structure and radiative properties of Ar XVII,” J. Quant. Spectrosc. Radiat. Transfer 321, 108991 (2024).10.1016/j.jqsrt.2024.108991
    [67]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Generalized atomic processes for interaction of intense femtosecond XUV- and x-ray radiation with solids,” Europhys. Lett. 108, 53001 (2014).10.1209/0295-5075/108/53001
    [68]
    S. M. Vinko, O. Ciricosta, and J. S. Wark, “Density functional theory calculations of continuum lowering in strongly coupled plasmas,” Nat. Commun. 5, 3533 (2014).10.1038/ncomms4533
    [69]
    O. Ciricosta, S. M. Vinko, B. Barbrel, D. S. Rackstraw, T. R. Preston, T. Burian, J. Chalupsky, B. I. Cho, H.-K. Chung, G. L. Dakovski, K. Engelhorn, V. Hájková, P. Heimann, M. Holmes, L. Juha, J. Krzywinski, R. W. Lee, S. Toleikis, J. J. Turner, U. Zastrau, and J. S. Wark, “Measurements of continuum lowering in solid-density plasmas created from elements and compounds,” Nat. Commun. 7, 11713 (2016).10.1038/ncomms11713
    [70]
    S. X. Hu, “Continuum lowering and fermi-surface rising in strongly coupled and degenerate plasmas,” Phys. Rev. Lett. 119, 065001 (2017).10.1103/physrevlett.119.065001
    [71]
    S. Hansen, E. C. Harding, P. F. Knapp, M. R. Gomez, T. Nagayama, and J. E. Bailey, “Changes in the electronic structure of highly compressed iron revealed by x-ray fluorescence lines and absorption edges,” High Energy Density Phys. 24, 39 (2017).10.1016/j.hedp.2017.07.002
    [72]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Atomic kinetics for isochoric heating of solid aluminum under short intense XUV free electron laser irradiation,” High Energy Density Phys. 15, 22 (2015).10.1016/j.hedp.2015.03.007
    [73]
    G. Ecker and W. Kröll, “Lowering of the ionization energy for a plasma in thermodynamic equilibrium,” Phys. Fluids 6, 62 (1963).10.1063/1.1724509
    [74]
    J. Stewart and K. Pyatt, “Lowering of ionization potentials in plasmas,” Astrophys. J. 144, 1203 (1966).10.1086/148714
    [75]
    F. B. Rosmej, L. A. Vainshtein, V. A. Astapenko, and V. S. Lisitsa, “Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells,” Matter Radiat. Extremes 5, 064202 (2020).10.1063/5.0022751
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (29) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return