Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Kong Jun, Shi Kaiyuan, Oganov Artem R., Zhang Jiaqing, Su Lei, Dong Xiao. Exotic compounds of monovalent calcium synthesized at high pressure[J]. Matter and Radiation at Extremes, 2024, 9(6): 067803. doi: 10.1063/5.0222230
Citation: Kong Jun, Shi Kaiyuan, Oganov Artem R., Zhang Jiaqing, Su Lei, Dong Xiao. Exotic compounds of monovalent calcium synthesized at high pressure[J]. Matter and Radiation at Extremes, 2024, 9(6): 067803. doi: 10.1063/5.0222230

Exotic compounds of monovalent calcium synthesized at high pressure

doi: 10.1063/5.0222230
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: leisu2050@iccas.ac.cn and xiao.dong@nankai.edu.cn
  • Received Date: 2024-06-06
  • Accepted Date: 2024-08-13
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • It is well known that atoms of the same element in different valence states show very different chemical behaviors. Calcium is a typical divalent metal, sharing or losing both of its valence electrons when forming compounds. Attempts have been made to synthesize compounds of monovalent calcium ions for decades, but with very little success (e.g., in clusters). Pressure can result in substantial changes in the properties of atoms and chemical bonding, creating an extensive variety of unique materials with special valence states. In this study, using the ab initio evolutionary algorithm USPEX, we search for stable calcium–chlorine (Ca–Cl) system compounds at pressures up to 100 GPa. Besides the expected compound CaCl2, we predict three new compounds with monovalent Ca to be stable at high pressures, namely, CaCl, Ca5Cl6, and Ca3Cl4. According to our calculations, CaCl is stable at pressures above 18 GPa and is predicted to undergo a transition from nonmagnetic Fm-3m-CaCl to ferromagnetic Pm-3m-CaCl at 40 GPa. Ca5Cl6 and Ca3Cl4 are stable at pressures above 37 and 73 GPa, with space groups P-1 and R-3, respectively. Following these predictions, we successfully synthesized Pm-3m-CaCl in laser-heated diamond anvil cell experiments. The emergence of the unusual valence state at high pressures reveals exciting opportunities for creating entirely new materials in sufficiently large quantities for a variety of potential applications.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Jun Kong: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Kaiyuan Shi: Data curation (equal); Formal analysis (equal); Investigation (equal). Artem R. Oganov: Conceptualization (equal); Data curation (equal); Funding acquisition (equal); Methodology (equal). Jiaqing Zhang: Data curation (equal); Formal analysis (equal); Investigation (equal). Lei Su: Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Xiao Dong: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Methodology (equal); Project administration (equal); Software (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal).
    X.D. designed the research. X.D. and J.K. performed and analyzed the calculations. L.S. designed experiments. J.K. and K.S performed the experiment. L.S., X.D., J.K., and J.Z. analyzed the experimental data. All authors contributed to the interpretation and discussion of the data. J.K., X.D., A.R.O., and L.S. wrote the manuscript.
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    M. J. Berridge, M. D. Bootman, and P. Lipp, “Calcium—A life and death signal,” Nature 395(6703), 645–648 (1998).10.1038/27094
    [2]
    D. Gebauer, A. Völkel, and H. Cölfen, “Stable prenucleation calcium carbonate clusters,” Science 322(5909), 1819–1822 (2008).10.1126/science.1164271
    [3]
    C. Cazorla and D. Errandonea, “Superionicity and polymorphism in calcium fluoride at high Pressure,” Phys. Rev. Lett. 113(23), 235902 (2014).10.1103/physrevlett.113.235902
    [4]
    C. Jones, “Open questions in low oxidation state group 2 chemistry,” Commun. Chem. 3(1), 159–164 (2020).10.1038/s42004-020-00408-8
    [5]
    B. Rösch, T. Gentner, J. Langer, C. Färber, J. Eyselein et al., “Dinitrogen complexation and reduction at low-valent calcium,” Science 371(6534), 1125–1128 (2021).10.1126/science.abf2374
    [6]
    L. Zhang, G. Shi, B. Peng, P. Gao, L. Chen et al., “Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property and monovalent calcium ions,” Natl. Sci. Rev. 8(7), nwaa274 (2020).10.1093/nsr/nwaa274
    [7]
    W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel et al., “Unexpected stable stoichiometries of sodium chlorides,” Science 342(6165), 1502–1505 (2013).10.1126/science.1244989
    [8]
    Y.-L. Li, S.-N. Wang, A. R. Oganov, H. Gou, J. S. Smith et al., “Investigation of exotic stable calcium carbides using theory and experiment,” Nat. Commun. 6(1), 6974 (2015).10.1038/ncomms7974
    [9]
    X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov et al., “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9(5), 440–445 (2017).10.1038/nchem.2716
    [10]
    X. Shi, Z. Yao, and B. Liu, “New high pressure phases of the Zn–N system,” J. Phys. Chem. C 124(7), 4044–4049 (2020).10.1021/acs.jpcc.0c00513
    [11]
    K. Li, J. Wang, and A. R. Oganov, “High-pressure phase diagram of the Ti–O system,” J. Phys. Chem. Lett. 12(23), 5486–5493 (2021).10.1021/acs.jpclett.1c01133
    [12]
    M. Bykov, E. Bykova, A. V. Ponomareva, I. A. Abrikosov, S. Chariton et al., “Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure,” Angew. Chem., Int. Ed. 60(16), 9003–9008 (2021).10.1002/anie.202100283
    [13]
    W. Lu, S. Liu, G. Liu, K. Hao, M. Zhou et al., “Disproportionation of SO2 at high pressure and temperature,” Phys. Rev. Lett. 128(10), 106001 (2022).10.1103/physrevlett.128.106001
    [14]
    P. Zhang, Y. Tian, Y. Yang, H. Liu, and G. Liu, “Stable Rb–B compounds under high pressure,” Phys. Rev. Res. 5(1), 013130 (2023).10.1103/physrevresearch.5.013130
    [15]
    B. Monserrat, M. Martinez-Canales, R. J. Needs, and C. J. Pickard, “Helium-Iron compounds at terapascal pressures,” Phys. Rev. Lett. 121(1), 015301 (2018).10.1103/physrevlett.121.015301
    [16]
    C. Ding, J. Yuan, X. Wang, T. Huang, Y. Wang et al., “Single-bonded nitrogen chain and porous nitrogen layer via Ce–N compounds,” Mater. Adv. 4(9), 2162–2173 (2023).10.1039/d2ma01012g
    [17]
    M. Amsler, S. S. Naghavi, and C. Wolverton, “Prediction of superconducting iron–bismuth intermetallic compounds at high pressure,” Chem. Sci. 8(3), 2226–2234 (2017).10.1039/c6sc04683e
    [18]
    W. Lu, S. Liu, M. Zhou, H. Wang, G. Liu et al., “Observation of iron with eight coordination in iron trifluoride under high pressure,” Angew. Chem., Int. Ed. 63(16), e202319320 (2024).10.1002/anie.202319320
    [19]
    G. Shi, L. Chen, Y. Yang, D. Li, Z. Qian et al., “Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions,” Nat. Chem. 10(7), 776–779 (2018).10.1038/s41557-018-0061-4
    [20]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122(2), 027001 (2019).10.1103/physrevlett.122.027001
    [21]
    I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33(15), 2006832 (2021).10.1002/adma.202006832
    [22]
    D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski et al., “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36–44 (2020).10.1016/j.mattod.2019.10.005
    [23]
    S. Mozaffari, D. Sun, V. S. Minkov, A. P. Drozdov, D. Knyazev et al., “Superconducting phase diagram of H3S under high magnetic fields,” Nat. Commun. 10(1), 2522 (2019).10.1038/s41467-019-10552-y
    [24]
    W. Chen, D. V. Semenok, A. G. Kvashnin, X. Huang, I. A. Kruglov et al., “Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12,” Nat. Commun. 12(1), 273 (2021).10.1038/s41467-020-20103-5
    [25]
    C. Deng, M. Wang, H. Huang, M. Xu, W. Zhao et al., “High-Tc superconductors in the ternary Sr-Hf/Zr-H system at high pressure,” Phys. Rev. B 109(18), 184516 (2024).10.1103/physrevb.109.184516
    [26]
    A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124(24), 244704 (2006).10.1063/1.2210932
    [27]
    A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works—And why,” Acc. Chem. Res. 44(3), 227–237 (2011).10.1021/ar1001318
    [28]
    A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comput. Phys. Commun. 184(4), 1172–1182 (2013).10.1016/j.cpc.2012.12.009
    [29]
    A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92(9), 5397–5403 (1990).10.1063/1.458517
    [30]
    J. Hafner, “Materials simulations using VASP—A quantum perspective to materials science,” Comput. Phys. Commun. 177(1–2), 6–13 (2007).10.1016/j.cpc.2007.02.045
    [31]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865 (1996).10.1103/physrevlett.77.3865
    [32]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 17953 (1994).10.1103/physrevb.50.17953
    [33]
    P. V. Bushlanov, V. A. Blatov, and A. R. Oganov, “Topology-based crystal structure generator,” Comput. Phys. Commun. 236, 1–7 (2019).10.1016/j.cpc.2018.09.016
    [34]
    A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater. 108, 1–5 (2015).10.1016/j.scriptamat.2015.07.021
    [35]
    G. Henkelman, A. Arnaldsson, and H. Jónsson, “A fast and robust algorithm for Bader decomposition of charge density,” Comput. Mater. Sci. 36(3), 354–360 (2006).10.1016/j.commatsci.2005.04.010
    [36]
    V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, “VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code,” Comput. Phys. Commun. 267(2021), 108033 (2021).10.1016/j.cpc.2021.108033
    [37]
    R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier et al., “LOBSTER: Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory,” J. Comput. Chem. 41(21), 1931–1940 (2020).10.1002/jcc.26353
    [38]
    K. Momma and F. Izumi, “VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44(6), 1272–1276 (2011).10.1107/s0021889811038970
    [39]
    H. Mao, J.-A. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions,” J. Geophys. Res.: Solid Earth 91(B5), 4673–4676, (1986).10.1029/jb091ib05p04673
    [40]
    C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Pressure Res. 35(3), 223–230 (2015).10.1080/08957959.2015.1059835
    [41]
    J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1–2), 55–69 (1993).10.1016/0921-4526(93)90108-i
    [42]
    A. R. Oganov, Y. Ma, Y. Xu, I. Errea, A. Bergara et al., “Exotic behavior and crystal structures of calcium under pressure,” Proc. Natl. Acad. Sci. U. S. A. 107(17), 7646–7651 (2010).10.1073/pnas.0910335107
    [43]
    Y. Yao, D. D. Klug, J. Sun, and R. Martoňák, “Structural prediction and phase transformation mechanisms in calcium at high pressure,” Phys. Rev. Lett. 103(5), 055503 (2009).10.1103/physrevlett.103.055503
    [44]
    T. Ishikawa, H. Nagara, N. Suzuki, J. Tsuchiya, and T. Tsuchiya, “Review of high pressure phases of calcium by first-principles calculations,” J. Phys. Conf. Ser. 215(1), 012105 (2010).10.1088/1742-6596/215/1/012105
    [45]
    T. Ishikawa, H. Nagara, N. Suzuki, T. Tsuchiya, and J. Tsuchiya, “High-pressure phases of calcium: Prediction of phase VI and upper-pressure phases from first principles,” Phys. Rev. B 81(9), 092104 (2010).10.1103/physrevb.81.092104
    [46]
    J.-M. Léger, J. Haines, and C. Danneels, “Phase transition sequence induced by high-pressure in CaCl2,” J. Phys. Chem. Solids 59(8), 1199–1204 (1998).10.1016/s0022-3697(98)00057-2
    [47]
    X. Dong, A. R. Oganov, H. Cui, X.-F. Zhou, and H.-T. Wang, “Electronegativity and chemical hardness of elements under pressure,” Proc. Natl. Acad. Sci. U. S. A. 119(10), e2117416119 (2022).10.1073/pnas.2117416119
    [48]
    J. P. Connerade, V. K. Dolmatov, and P. A. Lakshmi, “The filling of shells in compressed atoms,” J. Phys. B: At. Mol. Opt. Phys. 33(2), 251–264 (2000).10.1088/0953-4075/33/2/310
    [49]
    C. J. Pickard and R. J. Needs, “Predicted pressure-induced s-band ferromagnetism in alkali metals,” Phys. Rev. Lett. 107(8), 087201 (2011).10.1103/physrevlett.107.087201
    [50]
    T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, “New high-pressure phase of calcium,” J. Phys. Soc. Jpn. 74(9), 2391–2392 (2005).10.1143/jpsj.74.2391
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (47) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return