Citation: | Kong Jun, Shi Kaiyuan, Oganov Artem R., Zhang Jiaqing, Su Lei, Dong Xiao. Exotic compounds of monovalent calcium synthesized at high pressure[J]. Matter and Radiation at Extremes, 2024, 9(6): 067803. doi: 10.1063/5.0222230 |
[1] |
M. J. Berridge, M. D. Bootman, and P. Lipp, “Calcium—A life and death signal,” Nature 395(6703), 645–648 (1998).10.1038/27094
|
[2] |
D. Gebauer, A. Völkel, and H. Cölfen, “Stable prenucleation calcium carbonate clusters,” Science 322(5909), 1819–1822 (2008).10.1126/science.1164271
|
[3] |
C. Cazorla and D. Errandonea, “Superionicity and polymorphism in calcium fluoride at high Pressure,” Phys. Rev. Lett. 113(23), 235902 (2014).10.1103/physrevlett.113.235902
|
[4] |
C. Jones, “Open questions in low oxidation state group 2 chemistry,” Commun. Chem. 3(1), 159–164 (2020).10.1038/s42004-020-00408-8
|
[5] |
B. Rösch, T. Gentner, J. Langer, C. Färber, J. Eyselein et al., “Dinitrogen complexation and reduction at low-valent calcium,” Science 371(6534), 1125–1128 (2021).10.1126/science.abf2374
|
[6] |
L. Zhang, G. Shi, B. Peng, P. Gao, L. Chen et al., “Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property and monovalent calcium ions,” Natl. Sci. Rev. 8(7), nwaa274 (2020).10.1093/nsr/nwaa274
|
[7] |
W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel et al., “Unexpected stable stoichiometries of sodium chlorides,” Science 342(6165), 1502–1505 (2013).10.1126/science.1244989
|
[8] |
Y.-L. Li, S.-N. Wang, A. R. Oganov, H. Gou, J. S. Smith et al., “Investigation of exotic stable calcium carbides using theory and experiment,” Nat. Commun. 6(1), 6974 (2015).10.1038/ncomms7974
|
[9] |
X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov et al., “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9(5), 440–445 (2017).10.1038/nchem.2716
|
[10] |
X. Shi, Z. Yao, and B. Liu, “New high pressure phases of the Zn–N system,” J. Phys. Chem. C 124(7), 4044–4049 (2020).10.1021/acs.jpcc.0c00513
|
[11] |
K. Li, J. Wang, and A. R. Oganov, “High-pressure phase diagram of the Ti–O system,” J. Phys. Chem. Lett. 12(23), 5486–5493 (2021).10.1021/acs.jpclett.1c01133
|
[12] |
M. Bykov, E. Bykova, A. V. Ponomareva, I. A. Abrikosov, S. Chariton et al., “Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure,” Angew. Chem., Int. Ed. 60(16), 9003–9008 (2021).10.1002/anie.202100283
|
[13] |
W. Lu, S. Liu, G. Liu, K. Hao, M. Zhou et al., “Disproportionation of SO2 at high pressure and temperature,” Phys. Rev. Lett. 128(10), 106001 (2022).10.1103/physrevlett.128.106001
|
[14] |
P. Zhang, Y. Tian, Y. Yang, H. Liu, and G. Liu, “Stable Rb–B compounds under high pressure,” Phys. Rev. Res. 5(1), 013130 (2023).10.1103/physrevresearch.5.013130
|
[15] |
B. Monserrat, M. Martinez-Canales, R. J. Needs, and C. J. Pickard, “Helium-Iron compounds at terapascal pressures,” Phys. Rev. Lett. 121(1), 015301 (2018).10.1103/physrevlett.121.015301
|
[16] |
C. Ding, J. Yuan, X. Wang, T. Huang, Y. Wang et al., “Single-bonded nitrogen chain and porous nitrogen layer via Ce–N compounds,” Mater. Adv. 4(9), 2162–2173 (2023).10.1039/d2ma01012g
|
[17] |
M. Amsler, S. S. Naghavi, and C. Wolverton, “Prediction of superconducting iron–bismuth intermetallic compounds at high pressure,” Chem. Sci. 8(3), 2226–2234 (2017).10.1039/c6sc04683e
|
[18] |
W. Lu, S. Liu, M. Zhou, H. Wang, G. Liu et al., “Observation of iron with eight coordination in iron trifluoride under high pressure,” Angew. Chem., Int. Ed. 63(16), e202319320 (2024).10.1002/anie.202319320
|
[19] |
G. Shi, L. Chen, Y. Yang, D. Li, Z. Qian et al., “Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions,” Nat. Chem. 10(7), 776–779 (2018).10.1038/s41557-018-0061-4
|
[20] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122(2), 027001 (2019).10.1103/physrevlett.122.027001
|
[21] |
I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33(15), 2006832 (2021).10.1002/adma.202006832
|
[22] |
D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski et al., “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36–44 (2020).10.1016/j.mattod.2019.10.005
|
[23] |
S. Mozaffari, D. Sun, V. S. Minkov, A. P. Drozdov, D. Knyazev et al., “Superconducting phase diagram of H3S under high magnetic fields,” Nat. Commun. 10(1), 2522 (2019).10.1038/s41467-019-10552-y
|
[24] |
W. Chen, D. V. Semenok, A. G. Kvashnin, X. Huang, I. A. Kruglov et al., “Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12,” Nat. Commun. 12(1), 273 (2021).10.1038/s41467-020-20103-5
|
[25] |
C. Deng, M. Wang, H. Huang, M. Xu, W. Zhao et al., “High-Tc superconductors in the ternary Sr-Hf/Zr-H system at high pressure,” Phys. Rev. B 109(18), 184516 (2024).10.1103/physrevb.109.184516
|
[26] |
A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124(24), 244704 (2006).10.1063/1.2210932
|
[27] |
A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works—And why,” Acc. Chem. Res. 44(3), 227–237 (2011).10.1021/ar1001318
|
[28] |
A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comput. Phys. Commun. 184(4), 1172–1182 (2013).10.1016/j.cpc.2012.12.009
|
[29] |
A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92(9), 5397–5403 (1990).10.1063/1.458517
|
[30] |
J. Hafner, “Materials simulations using VASP—A quantum perspective to materials science,” Comput. Phys. Commun. 177(1–2), 6–13 (2007).10.1016/j.cpc.2007.02.045
|
[31] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865 (1996).10.1103/physrevlett.77.3865
|
[32] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 17953 (1994).10.1103/physrevb.50.17953
|
[33] |
P. V. Bushlanov, V. A. Blatov, and A. R. Oganov, “Topology-based crystal structure generator,” Comput. Phys. Commun. 236, 1–7 (2019).10.1016/j.cpc.2018.09.016
|
[34] |
A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater. 108, 1–5 (2015).10.1016/j.scriptamat.2015.07.021
|
[35] |
G. Henkelman, A. Arnaldsson, and H. Jónsson, “A fast and robust algorithm for Bader decomposition of charge density,” Comput. Mater. Sci. 36(3), 354–360 (2006).10.1016/j.commatsci.2005.04.010
|
[36] |
V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, “VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code,” Comput. Phys. Commun. 267(2021), 108033 (2021).10.1016/j.cpc.2021.108033
|
[37] |
R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier et al., “LOBSTER: Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory,” J. Comput. Chem. 41(21), 1931–1940 (2020).10.1002/jcc.26353
|
[38] |
K. Momma and F. Izumi, “VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44(6), 1272–1276 (2011).10.1107/s0021889811038970
|
[39] |
H. Mao, J.-A. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions,” J. Geophys. Res.: Solid Earth 91(B5), 4673–4676, (1986).10.1029/jb091ib05p04673
|
[40] |
C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Pressure Res. 35(3), 223–230 (2015).10.1080/08957959.2015.1059835
|
[41] |
J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1–2), 55–69 (1993).10.1016/0921-4526(93)90108-i
|
[42] |
A. R. Oganov, Y. Ma, Y. Xu, I. Errea, A. Bergara et al., “Exotic behavior and crystal structures of calcium under pressure,” Proc. Natl. Acad. Sci. U. S. A. 107(17), 7646–7651 (2010).10.1073/pnas.0910335107
|
[43] |
Y. Yao, D. D. Klug, J. Sun, and R. Martoňák, “Structural prediction and phase transformation mechanisms in calcium at high pressure,” Phys. Rev. Lett. 103(5), 055503 (2009).10.1103/physrevlett.103.055503
|
[44] |
T. Ishikawa, H. Nagara, N. Suzuki, J. Tsuchiya, and T. Tsuchiya, “Review of high pressure phases of calcium by first-principles calculations,” J. Phys. Conf. Ser. 215(1), 012105 (2010).10.1088/1742-6596/215/1/012105
|
[45] |
T. Ishikawa, H. Nagara, N. Suzuki, T. Tsuchiya, and J. Tsuchiya, “High-pressure phases of calcium: Prediction of phase VI and upper-pressure phases from first principles,” Phys. Rev. B 81(9), 092104 (2010).10.1103/physrevb.81.092104
|
[46] |
J.-M. Léger, J. Haines, and C. Danneels, “Phase transition sequence induced by high-pressure in CaCl2,” J. Phys. Chem. Solids 59(8), 1199–1204 (1998).10.1016/s0022-3697(98)00057-2
|
[47] |
X. Dong, A. R. Oganov, H. Cui, X.-F. Zhou, and H.-T. Wang, “Electronegativity and chemical hardness of elements under pressure,” Proc. Natl. Acad. Sci. U. S. A. 119(10), e2117416119 (2022).10.1073/pnas.2117416119
|
[48] |
J. P. Connerade, V. K. Dolmatov, and P. A. Lakshmi, “The filling of shells in compressed atoms,” J. Phys. B: At. Mol. Opt. Phys. 33(2), 251–264 (2000).10.1088/0953-4075/33/2/310
|
[49] |
C. J. Pickard and R. J. Needs, “Predicted pressure-induced s-band ferromagnetism in alkali metals,” Phys. Rev. Lett. 107(8), 087201 (2011).10.1103/physrevlett.107.087201
|
[50] |
T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, “New high-pressure phase of calcium,” J. Phys. Soc. Jpn. 74(9), 2391–2392 (2005).10.1143/jpsj.74.2391
|