Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Lacoste C. L. C., Hirsch A., d’Humières E., Tikhonchuk V. T., Antici P., Bardon M.. Theoretical model of current propagation in a helical coil with varying geometry and screen tube[J]. Matter and Radiation at Extremes, 2024, 9(6): 067201. doi: 10.1063/5.0221820
Citation: Lacoste C. L. C., Hirsch A., d’Humières E., Tikhonchuk V. T., Antici P., Bardon M.. Theoretical model of current propagation in a helical coil with varying geometry and screen tube[J]. Matter and Radiation at Extremes, 2024, 9(6): 067201. doi: 10.1063/5.0221820

Theoretical model of current propagation in a helical coil with varying geometry and screen tube

doi: 10.1063/5.0221820
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: clement.lacoste@u-bordeaux.fr and clement.lacoste@inrs.ca
  • Received Date: 2024-06-03
  • Accepted Date: 2024-07-23
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • An analytical model of current propagation in a helical coil with varying geometry is developed. It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleration and generation of electromagnetic pulses. We calculate the current that propagates in a helical coil and suggest a method for improving its dispersion properties using a screening tube and with pitch and radius variation. The electromagnetic fields calculated with the analytical model are in agreement with particle-in-cell simulations. The model provides insights into the physics of current propagation in helical coils with varying geometries and enables a numerical implementation for rapid proton spectrum computations, which facilitate the design of such coils for future experiments.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    C. L. C. Lacoste: Conceptualization (equal); Formal analysis (lead); Investigation (lead); Validation (lead); Writing – original draft (lead). A. Hirsch: Conceptualization (equal); Writing – original draft (supporting). E. d’Humières: Conceptualization (supporting); Supervision (equal); Writing – original draft (supporting). V. T. Tikhonchuk: Conceptualization (equal); Investigation (equal); Supervision (lead); Writing – original draft (lead). P. Antici: Supervision (lead); Writing – original draft (lead). M. Bardon: Conceptualization (lead); Methodology (lead); Supervision (lead); Writing – original draft (supporting).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    R. Kompfner, “The traveling-wave tube as amplifier at microwaves,” Proc. IRE 35, 124–127 (1947).10.1109/jrproc.1947.231238
    [2]
    J. R. Pierce, “Traveling-wave tubes,” Bell Syst. Tech. J. 29, 189–250 (1950).10.1002/j.1538-7305.1950.tb00465.x
    [3]
    G. Kino and S. Paik, “Circuit theory of coupled transmission systems,” J. Appl. Phys. 33, 3002–3008 (1962).10.1063/1.1728553
    [4]
    H. S. Uhm and J. Y. Choe, “Properties of the electromagnetic wave propagation in a helix-loaded waveguide,” J. Appl. Phys. 53, 8483–8488 (1982).10.1063/1.330497
    [5]
    J. Freund, M. Kodis, and N. Vanderplaats, “Self-consistent field theory of a helix traveling wave tube amplifier,” IEEE Trans. Plasma Sci. 20, 543–553 (1992).10.1109/27.163592
    [6]
    H. S. Uhm and R. C. Davidson, “Influence of wall impedance on the electron cyclotron maser instability,” Phys. Fluids 23, 2538–2546 (1980).10.1063/1.862955
    [7]
    J. Y. Choe, H. S. Uhm, and S. Ahn, “Mixed slow-wave operation of a wide-band dielectric gyrotron,” J. Appl. Phys. 52, 7067–7074 (1981).10.1063/1.328422
    [8]
    H. S. Uhm, “Cherenkov radiation from a relativistic annular electron beam propagating through a dielectric loaded waveguide,” J. Appl. Phys. 52, 6533–6539 (1981).10.1063/1.328603
    [9]
    D. A. Deacon, L. Elias, J. M. Madey, G. Ramian, H. Schwettman, and T. I. Smith, “First operation of a free-electron laser,” Phys. Rev. Lett. 38, 892 (1977).10.1103/physrevlett.38.892
    [10]
    R. Kompfner, The Invention of the Traveling-Wave Tube (San Francisco Press, 1964).
    [11]
    D. F. Minenna, F. André, Y. Elskens, J.-F. Auboin, F. Doveil, J. Puech, and É. Duverdier, “The traveling-wave tube in the history of telecommunication,” Eur. Phys. J. H 44, 1–36 (2019).10.1140/epjh/e2018-90023-1
    [12]
    A. Hirsch-Passicos, C. Lacoste, F. André, Y. Elskens, E. D’Humières, V. Tikhonchuk, and M. Bardon, “Helical coil design with controlled dispersion for bunching enhancement of protons generated by the target normal sheath acceleration,” Phys. Rev. E 109, 025211 (2024).10.1103/physreve.109.025211
    [13]
    [14]
    P. Puyuelo-Valdes, J. Henares, F. Hannachi, T. Ceccotti, J. Domange, M. Ehret, E. d’Humieres, L. Lancia, J. Marques, J. Santos et al., “Laser driven ion acceleration in high-density gas jets,” Proc. SPIE 11037, 110370B (2019).10.1117/12.2520799.
    [15]
    P. Puyuelo-Valdes, J. Henares, F. Hannachi, T. Ceccotti, J. Domange, M. Ehret, E. d’Humieres, L. Lancia, J.-R. Marquès, X. Ribeyre et al., “Proton acceleration by collisionless shocks using a supersonic H2 gas-jet target and high-power infrared laser pulses,” Phys. Plasmas 26, 123109 (2019).10.1063/1.5116337
    [16]
    M. Dunne, “Laser-driven particle accelerators,” Science 312, 374–376 (2006).10.1126/science.1126051
    [17]
    S. Vallières, M. Salvadori, P. Puyuelo-Valdes, S. Payeur, S. Fourmaux, F. Consoli, C. Verona, E. d’Humières, M. Chicoine, S. Roorda et al., “Thomson parabola and time-of-flight detector cross-calibration methodology on the ALLS 100 TW laser-driven ion acceleration beamline,” Rev. Sci. Instrum. 91, 103303 (2020).10.1063/5.0020257
    [18]
    S. Fourmaux, S. Buffechoux, B. Albertazzi, D. Capelli, A. Lévy, S. Gnedyuk, L. Lecherbourg, P. Lassonde, S. Payeur, P. Antici et al., “Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses,” Phys. Plasmas 20, 013110 (2013).10.1063/1.4789748
    [19]
    A. Higginson, R. Gray, M. King, R. Dance, S. Williamson, N. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. Green et al., “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [20]
    T. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink et al., “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92, 204801 (2004).10.1103/physrevlett.92.204801
    [21]
    L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert, F. Ceccherini, T. Cowan, T. Grismayer, S. Kar, A. Macchi et al., “Dynamics of electric fields driving the laser acceleration of multi-MeV protons,” Phys. Rev. Lett. 95, 195001 (2005).10.1103/physrevlett.95.195001
    [22]
    P. Patel, A. Mackinnon, M. Key, T. Cowan, M. Foord, M. Allen, D. Price, H. Ruhl, P. Springer, and R. Stephens, “Isochoric heating of solid-density matter with an ultrafast proton beam,” Phys. Rev. Lett. 91, 125004 (2003).10.1103/physrevlett.91.125004
    [23]
    K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou, D. Umstadter, and V. Y. Bychenkov, “Laser-triggered ion acceleration and table top isotope production,” Appl. Phys. Lett. 78, 595–597 (2001).10.1063/1.1343845
    [24]
    K. Lancaster, S. Karsch, H. Habara, F. Beg, E. Clark, R. Freeman, M. Key, J. King, R. Kodama, K. Krushelnick et al., “Characterization of 7Li (p,n) 7Be neutron yields from laser produced ion beams for fast neutron radiography,” Phys. Plasmas 11, 3404–3408 (2004).10.1063/1.1756911
    [25]
    M. Borghesi, A. Schiavi, D. Campbell, M. Haines, O. Willi, A. MacKinnon, L. Gizzi, M. Galimberti, R. Clarke, and H. Ruhl, “Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies,” Plasma Phys. Controlled Fusion 43, A267 (2001).10.1088/0741-3335/43/12a/320
    [26]
    M. Borghesi, L. Romagnani, A. Schiavi, D. Campbell, M. Haines, O. Willi, A. Mackinnon, M. Galimberti, L. Gizzi, R. Clarke, and S. Hawkes, “Measurement of highly transient electrical charging following high-intensity laser–solid interaction,” Appl. Phys. Lett. 82, 1529–1531 (2003).10.1063/1.1560554
    [27]
    M. Roth, T. Cowan, M. Key, S. Hatchett, C. Brown, W. Fountain, J. Johnson, D. Pennington, R. Snavely, S. Wilks et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436
    [28]
    V. Y. Bychenkov, W. Rozmus, A. Maksimchuk, D. Umstadter, and C. Capjack, “Fast ignitor concept with light ions,” Plasma Phys. Rep. 27, 1017–1020 (2001).10.1134/1.1426135
    [29]
    M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. Chen, G. Famulari, T. Gangolf, G. Revet, A. Schiavi, M. Senzacqua, and P. Antici, “Laser-accelerated particle beams for stress testing of materials,” Nat. Commun. 9, 372 (2018).10.1038/s41467-017-02675-x
    [30]
    M. Barberio, S. Veltri, M. Scisciò, and P. Antici, “Laser-accelerated proton beams as diagnostics for cultural heritage,” Sci. Rep. 7, 40415 (2017).10.1038/srep40415
    [31]
    M. Barberio, M. Scisciò, S. Vallières, S. Veltri, A. Morabito, and P. Antici, “Laser-generated proton beams for high-precision ultra-fast crystal synthesis,” Sci. Rep. 7, 12522 (2017).10.1038/s41598-017-12782-w
    [32]
    R. Snavely, M. Key, S. Hatchett, T. Cowan, M. Roth, T. Phillips, M. Stoyer, E. Henry, T. Sangster, M. Singh et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [33]
    S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pennington, A. Mackinnon, and R. Snavely, “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
    [34]
    S. Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann, B. Aurand, G. Cantono, P. Hadjisolomou, C. L. Lewis, A. Macchi et al., “Guided post-acceleration of laser-driven ions by a miniature modular structure,” Nat. Commun. 7, 10792 (2016).10.1038/ncomms10792.
    [35]
    M. Bardon, J. Moreau, L. Romagnani, C. Rousseaux, M. Ferri, F. Lefévre, I. Lantuéjoul, B. Etchessahar, S. Bazzoli, D. Farcage et al., “Physics of chromatic focusing, post-acceleration and bunching of laser-driven proton beams in helical coil targets,” Plasma Phys. Controlled Fusion 62, 125019 (2020).10.1088/1361-6587/abbe35
    [36]
    D. Safi, P. Birtel, S. Meyne, and A. F. Jacob, “A traveling-wave tube simulation approach with CST particle studio,” IEEE Trans. Electron Devices 65, 2257–2263 (2018).10.1109/ted.2018.2798810
    [37]
    [38]
    T. Weiland, M. Bartsch, U. Becker, M. Bihn, U. Blell, M. Clemens, M. Dehler, M. Dohlus, M. Drevlak, X. Du et al., “MAFIA version 4,” AIP Conf. Proc. 391, 65–70 (1997).10.1063/1.52369
    [39]
    D. F. Minenna, Y. Elskens, F. André, A. Poyé, J. Puech, and F. Doveil, “DIMOHA: A time-domain algorithm for traveling-wave tube simulations,” IEEE Trans. Electron Devices 66, 4042–4047 (2019).10.1109/ted.2019.2928450
    [40]
    [41]
    [42]
    B. Li, Z. H. Yang, J. Q. Li, X. F. Zhu, T. Huang, Q. Hu, Y. L. Hu, L. Xu, J. J. Ma, L. Liao et al., “Theory and design of microwave-tube simulator suite,” IEEE Trans. Electron Devices 56, 919–927 (2009).10.1109/ted.2009.2015413
    [43]
    [44]
    [45]
    K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).10.1109/TAP.1966.1138693
    [46]
    [47]
    E. Lefebvre, N. Cochet, S. Fritzler, V. Malka, M. M. Alonard, J.-F. Chemin, S. Darbon, L. Disdier, J. Faure, A. Fedotoff et al., “Electron and photon production from relativistic laser–plasma interactions,” Nucl. Fusion 43, 629 (2003).10.1088/0029-5515/43/7/317
    [48]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai et al., “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351–373 (2018).10.1016/j.cpc.2017.09.024
    [49]
    [50]
    J. P. Boris et al., “Relativistic plasma simulation-optimization of a hybrid code,” Proc. Fourth Conf. Num. Sim. Plasmas Naval Res. Lab. 3–67 (1970).
    [51]
    F. Consoli, V. T. Tikhonchuk, M. Bardon, P. Bradford, D. C. Carroll, J. Cikhardt, M. Cipriani, R. J. Clarke, T. E. Cowan, C. N. Danson et al., “Laser produced electromagnetic pulses: Generation, detection and mitigation,” High Power Laser Sci. Eng. 8, e22 (2020).10.1017/hpl.2020.13
    [52]
    E. Catrix, F. Boivin, K. Langlois, S. Vallières, C. Y. Boynukara, S. Fourmaux, and P. Antici, “Stable high repetition-rate laser-driven proton beam production for multidisciplinary applications on the advanced laser light source ion beamline,” Rev. Sci. Instrum. 94, 103003 (2023).10.1063/5.0160783
    [53]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return