Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
Wang Xiangbing, Chai Xiangxu, Li Ping, Zhang Bo, Zhu Qihua, Tian Xiaocheng, Wang Ju, Zong Zhaoyu, Zhou Song, Yao Ke, Li Sen, Zhao Junpu, Peng Zhitao. Ultraviolet spectral broadening by stimulated rotational Raman scattering on nitrogen pumped with signal laser injection[J]. Matter and Radiation at Extremes, 2025, 10(1): 017401. doi: 10.1063/5.0220473
Citation: Wang Xiangbing, Chai Xiangxu, Li Ping, Zhang Bo, Zhu Qihua, Tian Xiaocheng, Wang Ju, Zong Zhaoyu, Zhou Song, Yao Ke, Li Sen, Zhao Junpu, Peng Zhitao. Ultraviolet spectral broadening by stimulated rotational Raman scattering on nitrogen pumped with signal laser injection[J]. Matter and Radiation at Extremes, 2025, 10(1): 017401. doi: 10.1063/5.0220473

Ultraviolet spectral broadening by stimulated rotational Raman scattering on nitrogen pumped with signal laser injection

doi: 10.1063/5.0220473
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: chai_xiangxu@126.com and liping1984@caep.cn
  • Received Date: 2024-05-25
  • Accepted Date: 2024-09-13
  • Available Online: 2025-01-01
  • Publish Date: 2025-01-02
  • We present experimental results on kilojoule ultraviolet laser output with 1% spectral broadening. Through stimulated rotational Raman scattering (SRRS) with signal laser injection, we achieve effective spectral broadening in short-range propagation, with good retention of the original near-field distribution and time waveform. Theoretical calculations show that 2% bandwidth spectral broadening can be achieved by injecting 20 kW/cm2 signal light at 2.2 GW/cm2 flux of the pump laser. In addition, high-frequency modulation in the near field can be effectively avoided through replacement of the original random noise signal light by the controllable signal light. The SRRS in the atmospheric environment excited with signal laser injection can provide wide-band light output with controllable beam quality without long-distance propagation, representing an important potential route to realization of broadband laser drivers.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Xiangbing Wang: Conceptualization (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Xiangxu Chai: Conceptualization (equal); Software (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Ping Li: Funding acquisition (equal); Supervision (equal); Validation (equal). Bo Zhang: Conceptualization (equal); Project administration (equal); Software (equal). Qihua Zhu: Conceptualization (equal); Supervision (equal); Validation (equal). Xiaocheng Tian: Validation (equal). Ju Wang: Resources (equal); Validation (equal). Zhaoyu Zong: Investigation (equal); Validation (equal). Song Zhou: Validation (equal). Ke Yao: Validation (equal). Sen Li: Validation (equal). Junpu Zhao: Validation (equal). Zhitao Peng: Validation (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: Enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).10.1088/0029-5515/44/12/s14
    [2]
    H. Abu-Shawareb et al., “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065102 (2024).10.1103/physrevlett.132.065102
    [3]
    D. E. Hinkel, L. F. Berzak Hopkins, T. Ma, J. E. Ralph, F. Albert et al., “Development of improved radiation drive environment for high foot implosions at the National Ignition Facility,” Phys. Rev. Lett. 117, 225002 (2016).10.1103/physrevlett.117.225002
    [4]
    T. Gong, L. Hao, Z. Li, D. Yang, S. Li et al., “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446
    [5]
    R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula et al., “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
    [6]
    J. W. Bates, R. K. Follett, J. G. Shaw, S. P. Obenschain, J. F. Myatt et al., “Suppressing parametric instabilities in direct-drive inertial-confinement-fusion plasmas using broadband laser light,” Phys. Plasmas 30, 052703 (2023).10.1063/5.0150865
    [7]
    A. Lei, N. Kang, Y. Zhao, H. Liu, H. An et al., “Reduction of backward scatterings at the low-coherence Kunwu laser facility,” Phys. Rev. Lett. 132, 035102 (2024).10.1103/physrevlett.132.035102
    [8]
    P. J. Wegner, J. M. Auerbach, T. A. Biesiada, Jr., S. N. Dixit, J. K. Lawson et al., “NIF final optics system: Frequency conversion and beam conditioning,” Proc. SPIE 5341, 180 (2004).10.1117/12.538481
    [9]
    G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).10.1364/ol.11.000348
    [10]
    M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).10.1109/jqe.1986.1073083
    [11]
    D. Eimerl, D. Milam, and J. Yu, “Large bandwidth frequency-converted Nd:glass laser at 527 nm with Δν/ν=2%,” Phys. Rev. Lett. 70, 2738–2741 (1993).10.1103/physrevlett.70.2738
    [12]
    W. Huang, Z. Li, Y. Cui, Z. Zhou, and Z. Wang, “Efficient, watt-level, tunable 1.7 µm fiber Raman laser in H2-filled hollow-core fibers,” Opt. Lett. 45, 475–478 (2020).10.1364/ol.378496
    [13]
    A. I. Adamu, Y. Wang, M. S. Habib, M. K. Dasa, J. E. Antonio-Lopez et al., “Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53 µm to 2.4 µm,” Opt. Lett. 46, 452–455 (2021).10.1364/ol.411003
    [14]
    A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562–565 (2000).10.1103/physrevlett.85.562
    [15]
    E. Takahashi, L. L. Losev, T. Tabuchi, Y. Matsumoto, S. Kato et al., “Generation of 30 pure rotational Raman sidebands using two-color pumping of D2 gas by KrF laser,” Opt. Commun. 257, 133–138 (2006).10.1016/j.optcom.2005.07.035
    [16]
    J. Takahashi, Y. Kawabe, and E. Hanamura, “Generation of a broadband spectral comb with multiwave mixing by exchange of an impulsively stimulated phonon,” Opt. Express 12, 1185–1191 (2004).10.1364/opex.12.001185
    [17]
    E. Takahashi, S. Kato, Y. Matsumoto, and L. L. Losev, “Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber,” Opt. Express 15, 2535–2540 (2007).10.1364/oe.15.002535
    [18]
    Y. Cui, Y. Gao, D. Rao, D. Liu, F. Li et al., “High-energy low-temporal-coherence instantaneous broadband pulse system,” Opt. Lett. 44, 2859 (2019).10.1364/ol.44.002859
    [19]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao et al., “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [20]
    C. Garban-Labaune, E. Fabre, and A. Michard, “Effect of target metarial on absorption measurements at short laser wavelengths,” Opt. Commun. 41, 174–177 (1982).10.1016/0030-4018(82)90065-7
    [21]
    J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56, 8618–8631 (2017).10.1364/ao.56.008618
    [22]
    Y. Lin, T. J. Kessler, and G. N. Lawrence, “Raman scattering in air: Four-dimensional analysis,” Appl. Opt. 33, 4781–4791 (1994).10.1364/ao.33.004781
    [23]
    S. A. McLaren, S. Schrauth, K. McCandless, J. Penner, R. Aden et al., “Four-dimensional dynamics of multirotational transition stimulated rotational Raman scattering in air,” J. Opt. Soc. Am. B 40, 1800–1806 (2023).10.1364/josab.490088
    [24]
    A. Flusberg, S. Fulghum, H. Lotem, M. Rokni, and M. Tekula, “Multiseed stimulated rotational Raman scattering for wave-front control,” J. Opt. Soc. Am. B 8, 1851 (1991).10.1364/josab.8.001851
    [25]
    J. Zhao, W. Wang, X. Fu, J. Tang, Y. Xia et al., “Recent progress of the integration test bed,” Proc. SPIE 9266, 92660X (2014).10.1117/12.2074563
    [26]
    J. Zhao, Y. Liang, S. Li, Z. Zong, J. Tang et al., “Beam nonuniformity compensating by the programmable spatial shaper for the integration test bed,” Proc. SPIE 11052, 110521R (2019).10.1117/12.2524006
    [27]
    X. Chai, P. Li, J. Zhao, G. Wang, D. Zhu et al., “Laser-induced damage growth of large-aperture fused silica optics under high-fluence 351 nm laser irradiation,” Optik 226, 165549 (2021).10.1016/j.ijleo.2020.165549
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (43) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return