Citation: | Geng Yanlei, Li Jianfu, Zhang Zhaobin, Lv Yang, Lu Mengxin, Zhu Mengyuan, Liu Yong, Yuan Jianan, Hu Qingyang, Wang Xiaoli. Downshift of d-states and the decomposition of silver halides[J]. Matter and Radiation at Extremes, 2024, 9(6): 067804. doi: 10.1063/5.0216221 |
[1] |
R. Holmes, “Humphry Davy and the chemical moment,” Clin. Chem. 57, 1625–1631 (2011).10.1373/clinchem.2011.173971
|
[2] |
A. Unsöld, Sterne und Menschen (Springer, Berlin, Heidelberg, 1972).
|
[3] |
R. P. Iczkowski and J. L. Margrave, “Electronegativity,” J. Am. Chem. Soc. 83, 3547–3551 (1961).10.1021/ja01478a001
|
[4] |
R. T. Sanderson, “Electronegativity and bond energy,” J. Am. Chem. Soc. 105, 2259–2261 (1983).10.1021/ja00346a026
|
[5] |
K. Li, X. Wang, F. Zhang, and D. Xue, “Electronegativity identification of novel superhard materials,” Phys. Rev. Lett. 100, 235504 (2008).10.1103/physrevlett.100.235504
|
[6] |
K. A. Moltved and K. P. Kepp, “The chemical bond between transition metals and oxygen: Electronegativity, d-orbital effects, and oxophilicity as descriptors of metal–oxygen interactions,” J. Phys. Chem. C 123, 18432–18444 (2019).10.1021/acs.jpcc.9b04317
|
[7] |
B. Xiong et al., “Tailoring the electronic structure of ZnCo2O4 by incorporating anions with low electronegativity to improve the water oxidation activity,” Sci. China Mater. 66, 1793–1800 (2023).10.1007/s40843-022-2335-1
|
[8] |
A. Jog, E. Milosevic, P. Zheng, and D. Gall, “Effect of electronegativity on electron surface scattering in thin metal layers,” Appl. Phys. Lett. 120, 041601 (2022).10.1063/5.0078877
|
[9] |
L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, “Reactions of xenon with iron and nickel are predicted in the Earth’s inner core,” Nat. Chem. 6, 644–648 (2014).10.1038/nchem.1925
|
[10] |
X. Dong et al., “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
|
[11] |
M. S. Miao et al., “Anionic chemistry of noble gases: Formation of Mg–NG (NG = Xe, Kr, Ar) compounds under pressure,” J. Am. Chem. Soc. 137, 14122–14128 (2015).10.1021/jacs.5b08162
|
[12] |
B. Monserrat, M. Martinez-canales, R. J. Needs, and C. J. Pickard, “Helium-iron compounds at terapascal pressures,” Phys. Rev. Lett. 121, 015301 (2018).10.1103/physrevlett.121.015301
|
[13] |
J. Zhang et al., “Rare helium-bearing compound FeO2He stabilized at deep-earth conditions,” Phys. Rev. Lett. 121, 255703 (2018).10.1103/physrevlett.121.255703
|
[14] |
H. Gao, J. Sun, C. J. Pickard, and R. J. Needs, “Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides,” Phys. Rev. Mater. 3, 015002 (2019).10.1103/physrevmaterials.3.015002
|
[15] |
M. S. Miao, “Caesium in high oxidation states and as a p-block element,” Nat. Chem. 5, 846–852 (2013).10.1038/nchem.1754
|
[16] |
Q. Zhu, A. R. Oganov, and Q. Zeng, “Formation of stoichiometric CsFn compounds,” Sci. Rep. 5, 7875 (2015).10.1038/srep07875
|
[17] |
Y. Geng et al., “Pressure induced weakness of electrostatic interaction and solid decomposition in Cs–I compounds,” Phys. Chem. Chem. Phys. 25, 23448–23453 (2023).10.1039/d3cp02343e
|
[18] |
N. Dubrovinskaia et al., “Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying,” Phys. Rev. Lett. 95, 245502 (2005).10.1103/physrevlett.95.245502
|
[19] |
P. Gao et al., “Iron–magnesium compounds under high pressure,” New J. Chem. 43, 17403–17407 (2019).10.1039/c9nj02804h
|
[20] |
Y. Lv et al., “Reverse charge transfer and decomposition in Ca–Te compounds under high pressure,” Phys. Chem. Chem. Phys. 26, 10399–10407 (2024).10.1039/D3CP06209K
|
[21] |
Y. Liu et al., “Pressure-induced phase transitions and decompositions of Sr–S compounds,” Physica B Condens. Matter 681, 415846 (2024).10.1016/j.physb.2024.415846
|
[22] |
X. Dong, A. R. Oganov, H. Cui, X. F. Zhou, and H. T. Wang, “Electronegativity and chemical hardness of elements under pressure,” Proc. Natl. Acad. Sci. U. S. A. 119, e2117416119 (2022).10.1073/pnas.2117416119
|
[23] |
H. Huang et al., “Room-temperature wide-gap inorganic materials with excellent plasticity,” Adv. Funct. Mater. 33, 2306042 (2023).10.1002/adfm.202306042
|
[24] |
J. F. Hamilton, “The silver halide photographic process,” Adv. Phys. 37, 359–441 (1988).10.1080/00018738800101399
|
[25] |
B. E. Mellander, “Electrical conductivity and activation volume of the solid electrolyte phase α-AgI and the high-pressure phase fcc AgI,” Phys. Rev. B 26, 5886–5896 (1982).10.1103/physrevb.26.5886
|
[26] |
C. An et al., “Plasmonic silver incorporated silver halides for efficient photocatalysis,” J. Mater. Chem. A 4, 4336–4352 (2016).10.1039/c5ta07719b
|
[27] |
X. Ma, Y. Dai, M. Guo, and B. Huang, “The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X = Cl, Br, I): A theoretical study,” ChemPhysChem 13, 2304–2309 (2012).10.1002/cphc.201200159
|
[28] |
Y. Fan et al., “Regulations of silver halide nanostructure and composites on photocatalysis,” Adv. Compos. Hybrid Mater. 1, 269–299 (2018).10.1007/s42114-017-0005-2
|
[29] |
J. Li et al., “Mechanochemistry and the evolution of ionic bonds in dense silver iodide,” JACS Au 3, 402–408 (2023).10.1021/jacsau.2c00550
|
[30] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
|
[31] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
|
[32] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
|
[33] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
|
[34] |
D. C. Patton and M. R. Pederson, “Application of the generalized-gradient approximation to rare-gas dimers,” Phys. Rev. A 56, R2495–R2498 (1997).10.1103/physreva.56.r2495
|
[35] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
|
[36] |
H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
|
[37] |
W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias,” J. Phys.: Condens. Matter 21, 084204 (2009).10.1088/0953-8984/21/8/084204
|
[38] |
R. Dronskowski and P. E. Bloechl, “Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations,” J. Phys. Chem. 97, 8617–8624 (1993).10.1021/j100135a014
|
[39] |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
|
[40] |
A. Grzelak et al., “Metal fluoride nanotubes featuring square-planar building blocks in a high-pressure polymorph of AgF2,” Dalton Trans. 46, 14742–14745 (2017).10.1039/c7dt03178e
|
[41] |
A. Grzelak et al., “High-pressure behavior of silver fluorides up to 40 GPa,” Inorg. Chem. 56, 14651–14661 (2017).10.1021/acs.inorgchem.7b02528
|
[42] |
W. Grochala and R. Hoffmann, “Real and hypothetical intermediate-valence AgII/AgIII and AgII/AgI fluoride systems as potential superconductors,” Angew. Chem., Int. Ed. 40, 2742–2781 (2001).10.1002/1521-3773(20010803)40:15<2742::aid-anie2742>3.0.co;2-x
|
[43] |
S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci. 2, 398–401 (2003).10.1039/b211678b
|
[44] |
S. Hull and D. A. Keen, “Pressure-induced phase transitions in AgCl, AgBr, and AgI,” Phys. Rev. B 59, 750–761 (1999).10.1103/physrevb.59.750
|
[45] |
L. A. Palomino-Rojas et al., “Density functional study of the structural properties of silver halides: LDA vs GGA calculations,” Solid State Sci. 10, 1228–1235 (2008).10.1016/j.solidstatesciences.2007.11.022
|
[46] |
M. Boukhtouta et al., “Phase stability and electronic properties of silver halides,” Phase Transitions 88, 357–367 (2015).10.1080/01411594.2014.964236
|
[47] |
P. T. Jochym and K. Parlinski, “Elastic properties and phase stability of AgBr under pressure,” Phys. Rev. B 65, 024106 (2001).10.1103/physrevb.65.024106
|
[48] |
R. C. Hanson, T. A. Fjeldly, and H. D. Hochheimer, “Raman scattering from five phases of silver iodide,” Phys. Status Solidi B 70, 567–576 (1975).10.1002/pssb.2220700216
|
[49] |
D. A. Keen and S. Hull, “A powder neutron diffraction study of the pressure-induced phase transitions within silver iodide,” J. Phys.: Condens. Matter 5, 23–32 (1993).10.1088/0953-8984/5/1/005
|
[50] |
M. Catti, “First-principles Landau potential for the rocksalt to KOH to TlI-type phase transitions of AgI,” Phys. Rev. B 74, 174105 (2006).10.1103/physrevb.74.174105
|
[51] |
L. Yu, Q. Yan, and A. Ruzsinszky, “Key role of antibonding electron transfer in bonding on solid surfaces,” Phys. Rev. Mater. 3, 092801 (2019).10.1103/physrevmaterials.3.092801
|
[52] |
J. Wang, Y. Zhou, T. Liao, J. Zhang, and Z. Lin, “A first-principles investigation of the phase stability of Ti2AlC with Al vacancies,” Scr. Mater. 58, 227–230 (2008).10.1016/j.scriptamat.2007.09.048
|
[53] |
C. N. Louis, K. Iyakutti, and P. Malarvizhi, “Pressure dependence of metallization and superconducting transition in AgCl and AgBr,” J. Phys.: Condens. Matter 16, 1577–1592 (2004).10.1088/0953-8984/16/9/006
|
[54] |
B. Hammer and J. K. Nørskov, “Electronic factors determining the reactivity of metal surfaces,” Surf. Sci. 343, 211–220 (1995).10.1016/0039-6028(96)80007-0
|
[55] |
Q. Hu et al., “Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction,” Nat. Commun. 13, 3958 (2022).10.1038/s41467-022-31660-2
|
[56] |
F. Tang, L. Wang, M. Dessie Walle, A. Mustapha, and Y. N. Liu, “An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural,” J. Catal. 383, 172–180 (2020).10.1016/j.jcat.2020.01.019
|
[57] |
M. Andersen, “Revelations of the d band,” Nat. Catal. 6, 460–461 (2023).10.1038/s41929-023-00964-x
|
[58] |
L. G. M. Pettersson and A. Nilsson, “A molecular perspective on the d-band model: Synergy between experiment and theory,” Top. Catal. 57, 2–13 (2014).10.1007/s11244-013-0157-4
|
[59] |
S. Jiao, X. Fu, and H. Huang, “Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond,” Adv. Funct. Mater. 32, 2107651 (2022).10.1002/adfm.202107651
|
[60] |
Z. Xu et al., “Regulation of ionic bond in group IIB transition metal iodides,” Chin. Phys. Lett. 40, 076201 (2023).10.1088/0256-307x/40/7/076201
|
[61] |
Z. Xu et al., “Pressure-induced decomposition of cadmium iodide,” Europhys. Lett. 140, 16003 (2022).10.1209/0295-5075/ac94f4
|