Citation: | Dornheim Tobias, Schwalbe Sebastian, Tolias Panagiotis, Böhme Maximilian P., Moldabekov Zhandos A., Vorberger Jan. Ab initio density response and local field factor of warm dense hydrogen[J]. Matter and Radiation at Extremes, 2024, 9(5): 057401. doi: 10.1063/5.0211407 |
[1] |
Frontiers and Challenges in Warm Dense Matter, edited by F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey (Springer International Publishing, 2014).
|
[2] |
R. Drake, High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, Graduate Texts in Physics (Springer International Publishing, 2018).
|
[3] |
R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
|
[4] |
S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).10.1103/physrevb.84.224109
|
[5] |
E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: Ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).10.1063/1.3116505
|
[6] |
A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey, T. Döppner, L. Divol, M. Hohenberger, S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D. S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong, J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, C. R. Weber, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, and G. B. Zimmerman, “Burning plasma achieved in inertial fusion,” Nature 601, 542–548 (2022).10.1038/s41586-021-04281-w
|
[7] |
O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan, S. A. Slutz, M. R. Gomez, and M. A. Sweeney, “Physics principles of inertial confinement fusion and U.S. program overview,” Rev. Mod. Phys. 95, 025005 (2023).10.1103/revmodphys.95.025005
|
[8] |
H. Abu-Shawareb et al., “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065102 (2024).10.1103/physrevlett.132.065102
|
[9] |
D. Batani, A. Colaïtis, F. Consoli, C. N. Danson, L. A. Gizzi, J. Honrubia, T. Kühl, S. Le Pape, J.-L. Miquel, J. M. Perlado et al., “Future for inertial-fusion energy in Europe: A roadmap,” High Power Laser Sci. Eng. 11, e83 (2023).10.1017/hpl.2023.80
|
[10] |
B. Militzer, W. B. Hubbard, J. Vorberger, I. Tamblyn, and S. A. Bonev, “A massive core in Jupiter predicted from first-principles simulations,” Astrophys. J. 688, L45–L48 (2008).10.1086/594364
|
[11] |
A. Benuzzi-Mounaix, S. Mazevet, A. Ravasio, T. Vinci, A. Denoeud, M. Koenig, N. Amadou, E. Brambrink, F. Festa, A. Levy, M. Harmand, S. Brygoo, G. Huser, V. Recoules, J. Bouchet, G. Morard, F. Guyot, T. de Resseguier, K. Myanishi, N. Ozaki, F. Dorchies, J. Gaudin, P. M. Leguay, O. Peyrusse, O. Henry, D. Raffestin, S. L. Pape, R. Smith, and R. Musella, “Progress in warm dense matter study with applications to planetology,” Phys. Scr. 2014(T161), 014060.10.1088/0031-8949/2014/t161/014060
|
[12] |
R. Helled, G. Mazzola, and R. Redmer, “Understanding dense hydrogen at planetary conditions,” Nat. Rev. Phys. 2, 562–574 (2020).10.1038/s42254-020-0223-3
|
[13] |
A. Becker, W. Lorenzen, J. J. Fortney, N. Nettelmann, M. Schöttler, and R. Redmer, “Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of brown dwarfs,” Astrophys. J., Suppl. Ser. 215, 21 (2014).10.1088/0067-0049/215/2/21
|
[14] |
D. Saumon, W. B. Hubbard, G. Chabrier, and H. M. van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs,” Astrophys. J. 391, 827–831 (1992).10.1086/171391
|
[15] |
N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, and D. Blaschke, “Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter,” Astrophys. J. 683, 1217 (2008).10.1086/589806
|
[16] |
N. Nettelmann, A. Becker, B. Holst, and R. Redmer, “Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2),” Astrophys. J. 750, 52 (2012).10.1088/0004-637x/750/1/52
|
[17] |
B. Militzer, W. B. Hubbard, S. Wahl, J. I. Lunine, E. Galanti, Y. Kaspi, Y. Miguel, T. Guillot, K. M. Moore, M. Parisi, J. E. P. Connerney, R. Helled, H. Cao, C. Mankovich, D. J. Stevenson, R. S. Park, M. Wong, S. K. Atreya, J. Anderson, and S. J. Bolton, “Juno spacecraft measurements of Jupiter’s gravity imply a dilute core,” Planet. Sci. J. 3, 185 (2022).10.3847/psj/ac7ec8
|
[18] |
C. Pierleoni, M. A. Morales, G. Rillo, M. Holzmann, and D. M. Ceperley, “Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations,” Proc. Natl. Acad. Sci. U. S. A. 113, 4953–4957 (2016).10.1073/pnas.1603853113
|
[19] |
T. Dornheim, Z. A. Moldabekov, K. Ramakrishna, P. Tolias, A. D. Baczewski, D. Kraus, T. R. Preston, D. A. Chapman, M. P. Böhme, T. Döppner, F. Graziani, M. Bonitz, A. Cangi, and J. Vorberger, “Electronic density response of warm dense matter,” Phys. Plasmas 30, 032705 (2023).10.1063/5.0138955
|
[20] |
A. V. Filinov and M. Bonitz, “Equation of state of partially ionized hydrogen and deuterium plasma revisited,” Phys. Rev. E 108, 055212 (2023).10.1103/physreve.108.055212
|
[21] |
G. Mazzola, S. Yunoki, and S. Sorella, “Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation,” Nat. Commun. 5, 3487 (2014).10.1038/ncomms4487
|
[22] |
B. Cheng, G. Mazzola, C. J. Pickard, and M. Ceriotti, “Evidence for supercritical behaviour of high-pressure liquid hydrogen,” Nature 585, 217–220 (2020).10.1038/s41586-020-2677-y
|
[23] |
V. V. Karasiev, J. Hinz, S. X. Hu, and S. B. Trickey, “On the liquid–liquid phase transition of dense hydrogen,” Nature 600, E12–E14 (2021).10.1038/s41586-021-04078-x
|
[24] |
M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471
|
[25] |
R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017).10.1126/science.aal1579
|
[26] |
P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, P. Loubeyre, J. H. Eggert, J. L. Peterson, N. B. Meezan, S. L. Pape, G. W. Collins, R. Jeanloz, and R. J. Hemley, “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018).10.1126/science.aat0970
|
[27] |
M. Bonitz, T. Dornheim, Z. A. Moldabekov, S. Zhang, P. Hamann, H. Kählert, A. Filinov, K. Ramakrishna, and J. Vorberger, “Ab initio simulation of warm dense matter,” Phys. Plasmas 27, 042710 (2020).10.1063/1.5143225
|
[28] |
G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008).
|
[29] |
T. Ott, H. Thomsen, J. W. Abraham, T. Dornheim, and M. Bonitz, “Recent progress in the theory and simulation of strongly correlated plasmas: Phase transitions, transport, quantum, and magnetic field effects,” Eur. Phys. J. E 72, 84 (2018).10.1140/epjd/e2018-80385-7
|
[30] |
G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013).
|
[31] |
M. Bonitz, A. Filinov, V. O. Golubnychiy, T. Bornath, and W. D. Kraeft, “First principle thermodynamic and dynamic simulations for dense quantum plasmas,” Contrib. Plasma Phys. 45, 450–458 (2005).10.1002/ctpp.200510051
|
[32] |
N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441–A1443 (1965).10.1103/physrev.137.a1441
|
[33] |
B. Holst, R. Redmer, and M. P. Desjarlais, “Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations,” Phys. Rev. B 77, 184201 (2008).10.1103/physrevb.77.184201
|
[34] |
K. Ramakrishna, T. Dornheim, and J. Vorberger, “Influence of finite temperature exchange-correlation effects in hydrogen,” Phys. Rev. B 101, 195129 (2020).10.1103/physrevb.101.195129
|
[35] |
J.-F. Danel, L. Kazandjian, and R. Piron, “Equation of state of carbon in the warm dense matter regime from density-functional theory molecular dynamics,” Phys. Rev. E 98, 043204 (2018).10.1103/physreve.98.043204
|
[36] |
A. J. White and L. A. Collins, “Fast and universal Kohn-Sham density functional theory algorithm for warm dense matter to hot dense plasma,” Phys. Rev. Lett. 125, 055002 (2020).10.1103/physrevlett.125.055002
|
[37] |
K. Ramakrishna, A. Cangi, T. Dornheim, A. Baczewski, and J. Vorberger, “First-principles modeling of plasmons in aluminum under ambient and extreme conditions,” Phys. Rev. B 103, 125118 (2021).10.1103/physrevb.103.125118
|
[38] |
M. Schörner, M. Bethkenhagen, T. Döppner, D. Kraus, L. B. Fletcher, S. H. Glenzer, and R. Redmer, “X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula,” Phys. Rev. E 107, 065207 (2023).10.1103/physreve.107.065207
|
[39] |
Z. A. Moldabekov, M. Pavanello, M. P. Böhme, J. Vorberger, and T. Dornheim, “Linear-response time-dependent density functional theory approach to warm dense matter with adiabatic exchange-correlation kernels,” Phys. Rev. Res. 5, 023089 (2023).10.1103/physrevresearch.5.023089
|
[40] |
B. Holst, M. French, and R. Redmer, “Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen,” Phys. Rev. B 83, 235120 (2011).10.1103/physrevb.83.235120
|
[41] |
M. French, G. Röpke, M. Schörner, M. Bethkenhagen, M. P. Desjarlais, and R. Redmer, “Electronic transport coefficients from density functional theory across the plasma plane,” Phys. Rev. E 105, 065204 (2022).10.1103/physreve.105.065204
|
[42] |
V. V. Karasiev, L. Calderin, and S. B. Trickey, “Importance of finite-temperature exchange correlation for warm dense matter calculations,” Phys. Rev. E 93, 063207 (2016).10.1103/physreve.93.063207
|
[43] |
V. V. Karasiev, D. I. Mihaylov, and S. X. Hu, “Meta-GGA exchange-correlation free energy density functional to increase the accuracy of warm dense matter simulations,” Phys. Rev. B 105, L081109 (2022).10.1103/physrevb.105.l081109
|
[44] |
R. C. Clay, J. Mcminis, J. M. McMahon, C. Pierleoni, D. M. Ceperley, and M. A. Morales, “Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo,” Phys. Rev. B 89, 184106 (2014).10.1103/physrevb.89.184106
|
[45] |
L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, and S. Grimme, “A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions,” Phys. Chem. Chem. Phys. 19, 32184–32215 (2017).10.1039/c7cp04913g
|
[46] |
V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, “Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations,” Phys. Rev. Lett. 112, 076403 (2014).10.1103/physrevlett.112.076403
|
[47] |
S. Groth, T. Dornheim, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions,” Phys. Rev. Lett. 119, 135001 (2017).10.1103/physrevlett.119.135001
|
[48] |
V. V. Karasiev, J. W. Dufty, and S. B. Trickey, “Nonempirical semilocal free-energy density functional for matter under extreme conditions,” Phys. Rev. Lett. 120, 076401 (2018).10.1103/physrevlett.120.076401
|
[49] | |
[50] |
Z. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and T. Dornheim, “Ab initio static exchange–correlation kernel across Jacob’s ladder without functional derivatives,” J. Chem. Theory Comput. 19, 1286–1299 (2023).10.1021/acs.jctc.2c01180
|
[51] |
S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys. 81, 1625 (2009).10.1103/revmodphys.81.1625
|
[52] |
D. H. Froula, J. S. Ross, L. Divol, and S. H. Glenzer, “Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas (invited),” Rev. Sci. Instrum. 77, 10E522 (2006).10.1063/1.2336451
|
[53] |
T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. R. Preston, Z. A. Moldabekov, and J. Vorberger, “Accurate temperature diagnostics for matter under extreme conditions,” Nat. Commun. 13, 7911 (2022).10.1038/s41467-022-35578-7
|
[54] |
G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee, and O. L. Landen, “Theoretical model of x-ray scattering as a dense matter probe,” Phys. Rev. E 67, 026412 (2003).10.1103/physreve.67.026412
|
[55] |
K. Falk, S. P. Regan, J. Vorberger, B. J. B. Crowley, S. H. Glenzer, S. X. Hu, C. D. Murphy, P. B. Radha, A. P. Jephcoat, J. S. Wark, D. O. Gericke, and G. Gregori, “Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium,” Phys. Rev. E 87, 043112 (2013).10.1103/physreve.87.043112
|
[56] |
K. Falk, E. J. Gamboa, G. Kagan, D. S. Montgomery, B. Srinivasan, P. Tzeferacos, and J. F. Benage, “Equation of state measurements of warm dense carbon using laser-driven shock and release technique,” Phys. Rev. Lett. 112, 155003 (2014).10.1103/physrevlett.112.155003
|
[57] |
D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. J. Gamboa, M. Gauthier, D. O. Gericke, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravasio, W. Schumaker, J. Vorberger, and T. Döppner, “Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering,” Plasma Phys. Controlled Fusion 61, 014015 (2018).10.1088/1361-6587/aadd6c
|
[58] |
J. Chihara, “Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons,” J. Phys. F: Met. Phys. 17, 295–304 (1987).10.1088/0305-4608/17/2/002
|
[59] |
Z. A. Moldabekov, T. Dornheim, M. Bonitz, and T. S. Ramazanov, “Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions,” Phys. Rev. E 101, 053203 (2020).10.1103/physreve.101.053203
|
[60] |
D. Casas, A. Andreev, M. Schnürer, M. Barriga-Carrasco, R. Morales, and L. González-Gallego, “Stopping power of a heterogeneous warm dense matter,” Laser Part. Beams 34, 306–314 (2016).10.1017/s0263034616000161
|
[61] |
M. Veysman, G. Röpke, M. Winkel, and H. Reinholz, “Optical conductivity of warm dense matter within a wide frequency range using quantum statistical and kinetic approaches,” Phys. Rev. E 94, 013203 (2016).10.1103/physreve.94.013203
|
[62] |
S. Jiang, O. L. Landen, H. D. Whitley, S. Hamel, R. London, D. S. Clark, P. Sterne, S. B. Hansen, S. X. Hu, G. W. Collins, and Y. Ping, “Thermal transport in warm dense matter revealed by refraction-enhanced x-ray radiography with a deep-neural-network analysis,” Commun. Phys. 6, 98 (2023).10.1038/s42005-023-01190-4
|
[63] |
N. M. Gill, C. J. Fontes, and C. E. Starrett, “Time-dependent density functional theory applied to average atom opacity,” Phys. Rev. E 103, 043206 (2021).10.1103/physreve.103.043206
|
[64] |
P. Hollebon, O. Ciricosta, M. P. Desjarlais, C. Cacho, C. Spindloe, E. Springate, I. C. E. Turcu, J. S. Wark, and S. M. Vinko, “Ab initio simulations and measurements of the free-free opacity in aluminum,” Phys. Rev. E 100, 043207 (2019).10.1103/physreve.100.043207
|
[65] |
X. Zan, C. Lin, Y. Hou, and J. Yuan, “Local field correction to ionization potential depression of ions in warm or hot dense matter,” Phys. Rev. E 104, 025203 (2021).10.1103/physreve.104.025203
|
[66] |
G. Senatore, S. Moroni, and D. M. Ceperley, “Local field factor and effective potentials in liquid metals,” J. Non-Cryst. Solids 205–207, 851–854 (1996).10.1016/s0022-3093(96)00316-x
|
[67] |
Z. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, and T. Ramazanov, “Statically screened ion potential and Bohm potential in a quantum plasma,” Phys. Plasmas 22, 102104 (2015).10.1063/1.4932051
|
[68] |
A. Pribram-Jones, P. E. Grabowski, and K. Burke, “Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem,” Phys. Rev. Lett. 116, 233001 (2016).10.1103/physrevlett.116.233001
|
[69] |
Z. A. Moldabekov, M. Lokamani, J. Vorberger, A. Cangi, and T. Dornheim, “Non-empirical mixing coefficient for hybrid XC functionals from analysis of the XC kernel,” J. Phys. Chem. Lett. 14, 1326–1333 (2023).10.1021/acs.jpclett.2c03670
|
[70] |
T. Dornheim, S. Groth, and M. Bonitz, “The uniform electron gas at warm dense matter conditions,” Phys. Rep. 744, 1–86 (2018).10.1016/j.physrep.2018.04.001
|
[71] |
T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Z. Moldabekov, and M. Bonitz, “The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation,” J. Chem. Phys. 151, 194104 (2019).10.1063/1.5123013
|
[72] |
T. Dornheim, A. Cangi, K. Ramakrishna, M. Böhme, S. Tanaka, and J. Vorberger, “Effective static approximation: A fast and reliable tool for warm-dense matter theory,” Phys. Rev. Lett. 125, 235001 (2020).10.1103/physrevlett.125.235001
|
[73] |
T. Dornheim, Z. A. Moldabekov, and P. Tolias, “Analytical representation of the local field correction of the uniform electron gas within the effective static approximation,” Phys. Rev. B 103, 165102 (2021).10.1103/physrevb.103.165102
|
[74] |
M. Böhme, Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Static electronic density response of warm dense hydrogen: Ab initio path integral Monte Carlo simulations,” Phys. Rev. Lett. 129, 066402 (2022).10.1103/physrevlett.129.066402
|
[75] |
M. Böhme, Z. A. Moldabekov, J. Vorberger, and T. Dornheim, “Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions,” Phys. Rev. E 107, 015206 (2023).10.1103/physreve.107.015206
|
[76] |
M. Takahashi and M. Imada, “Monte Carlo calculation of quantum systems,” J. Phys. Soc. Jpn. 53, 963–974 (1984).10.1143/jpsj.53.963
|
[77] |
D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys. 67, 279 (1995).10.1103/revmodphys.67.279
|
[78] |
M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,” Phys. Rev. E 74, 036701 (2006).10.1103/physreve.74.036701
|
[79] |
Z. Moldabekov, T. Dornheim, J. Vorberger, and A. Cangi, “Benchmarking exchange-correlation functionals in the spin-polarized inhomogeneous electron gas under warm dense conditions,” Phys. Rev. B 105, 035134 (2022).10.1103/physrevb.105.035134
|
[80] |
Z. Moldabekov, S. Schwalbe, M. P. Böhme, J. Vorberger, X. Shao, M. Pavanello, F. R. Graziani, and T. Dornheim, “Bound-state breaking and the importance of thermal exchange–correlation effects in warm dense hydrogen,” J. Chem. Theory Comput. 20, 68–78 (2024).10.1021/acs.jctc.3c00934
|
[81] |
D. M. Ceperley, “Fermion nodes,” J. Stat. Phys. 63, 1237–1267 (1991).10.1007/bf01030009
|
[82] |
T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).10.1103/physreve.100.023307
|
[83] |
M. Troyer and U. J. Wiese, “Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett. 94, 170201 (2005).10.1103/physrevlett.94.170201
|
[84] |
T. Dornheim, P. Tolias, S. Groth, Z. A. Moldabekov, J. Vorberger, and B. Hirshberg, “Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles,” J. Chem. Phys. 159, 164113 (2023).10.1063/5.0171930
|
[85] |
T. Dornheim, S. Schwalbe, Z. A. Moldabekov, J. Vorberger, and P. Tolias, “Ab initio path integral Monte Carlo simulations of the uniform electron gas on large length scales,” J. Phys. Chem. Lett. 15, 1305–1313 (2024).10.1021/acs.jpclett.3c03193
|
[86] |
Y. Xiong and H. Xiong, “On the thermodynamic properties of fictitious identical particles and the application to fermion sign problem,” J. Chem. Phys. 157, 094112 (2022).10.1063/5.0106067
|
[87] | |
[88] |
T. Dornheim, S. Schwalbe, M. Böhme, Zh. Moldabekov, J. Vorberger, and P. Tolias, “Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties,” J. Chem. Phys. 160, 164111 (2024).10.1063/5.0206787
|
[89] |
T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, “Ab initio quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit,” Phys. Rev. Lett. 117, 156403 (2016).10.1103/physrevlett.117.156403
|
[90] |
T. Dornheim and J. Vorberger, “Overcoming finite-size effects in electronic structure simulations at extreme conditions,” J. Chem. Phys. 154, 144103 (2021).10.1063/5.0045634
|
[91] |
U. Zastrau, P. Sperling, M. Harmand, A. Becker, T. Bornath, R. Bredow, S. Dziarzhytski, T. Fennel, L. B. Fletcher, E. Förster, S. Göde, G. Gregori, V. Hilbert, D. Hochhaus, B. Holst, T. Laarmann, H. J. Lee, T. Ma, J. P. Mithen, R. Mitzner, C. D. Murphy, M. Nakatsutsumi, P. Neumayer, A. Przystawik, S. Roling, M. Schulz, B. Siemer, S. Skruszewicz, J. Tiggesb”aumker, S. Toleikis, T. Tschentscher, T. White, M. Wöstmann, H. Zacharias, T. Döppner, S. H. Glenzer, and R. Redmer, “Resolving ultrafast heating of dense cryogenic hydrogen,” Phys. Rev. Lett. 112, 105002 (2014).10.1103/physrevlett.112.105002
|
[92] |
L. B. Fletcher, J. Vorberger, W. Schumaker, C. Ruyer, S. Goede, E. Galtier, U. Zastrau, E. P. Alves, S. D. Baalrud, R. A. Baggott, B. Barbrel, Z. Chen, T. Döppner, M. Gauthier, E. Granados, J. B. Kim, D. Kraus, H. J. Lee, M. J. MacDonald, R. Mishra, A. Pelka, A. Ravasio, C. Roedel, A. R. Fry, R. Redmer, F. Fiuza, D. O. Gericke, and S. H. Glenzer, “Electron-ion temperature relaxation in warm dense hydrogen observed with picosecond resolved x-ray scattering,” Front. Phys. 10, 838524 (2022).10.3389/fphy.2022.838524
|
[93] | |
[94] |
L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, “Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53, 1814–1832 (1996).10.1103/physrevb.53.1814
|
[95] |
M. F. Herman, E. J. Bruskin, and B. J. Berne, “On path integral Monte Carlo simulations,” J. Chem. Phys. 76, 5150–5155 (1982).10.1063/1.442815
|
[96] |
D. Chandler and P. G. Wolynes, “Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids,” J. Chem. Phys. 74, 4078–4095 (1981).10.1063/1.441588
|
[97] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).10.1063/1.1699114
|
[98] |
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, EBL-Schweitzer, 2009).
|
[99] |
B. Militzer, “Computation of the high temperature Coulomb density matrix in periodic boundary conditions,” Comput. Phys. Commun. 204, 88–96 (2016).10.1016/j.cpc.2016.03.011
|
[100] |
E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley, “Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas,” Phys. Rev. Lett. 110, 146405 (2013).10.1103/physrevlett.110.146405
|
[101] |
T. Dornheim, S. Groth, A. Filinov, and M. Bonitz, “Permutation blocking path integral Monte Carlo: A highly efficient approach to the simulation of strongly degenerate non-ideal fermions,” New J. Phys. 17, 073017 (2015).10.1088/1367-2630/17/7/073017
|
[102] |
B. Militzer and K. P. Driver, “Development of path integral Monte Carlo simulations with localized nodal surfaces for second-row elements,” Phys. Rev. Lett. 115, 176403 (2015).10.1103/physrevlett.115.176403
|
[103] |
T. Dornheim, M. Invernizzi, J. Vorberger, and B. Hirshberg, “Attenuating the fermion sign problem in path integral Monte Carlo simulations using the bogoliubov inequality and thermodynamic integration,” J. Chem. Phys. 153, 234104 (2020).10.1063/5.0030760
|
[104] |
B. Hirshberg, M. Invernizzi, and M. Parrinello, “Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality,” J. Chem. Phys. 152, 171102 (2020).10.1063/5.0008720
|
[105] |
A. Filinov and M. Bonitz, “Collective and single-particle excitations in two-dimensional dipolar Bose gases,” Phys. Rev. A 86, 043628 (2012).10.1103/physreva.86.043628
|
[106] |
E. Rabani, D. R. Reichman, G. Krilov, and B. J. Berne, “The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para -hydrogen,” Proc. Natl. Acad. Sci. U. S. A. 99, 1129–1133 (2002).10.1073/pnas.261540698
|
[107] |
T. Dornheim, Z. A. Moldabekov, and J. Vorberger, “Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas,” J. Chem. Phys. 155, 054110 (2021).10.1063/5.0058988
|
[108] |
T. Dornheim, Z. Moldabekov, P. Tolias, M. Böhme, and J. Vorberger, “Physical insights from imaginary-time density–density correlation functions,” Matter Radiat. Extremes 8, 056601 (2023).10.1063/5.0149638
|
[109] |
T. Dornheim, J. Vorberger, Z. A. Moldabekov, and M. Böhme, “Analysing the dynamic structure of warm dense matter in the imaginary-time domain: Theoretical models and simulations,” Philos. Trans. R. Soc., A 381, 20220217 (2023).10.1098/rsta.2022.0217
|
[110] |
T. Dornheim, M. P. Böhme, D. A. Chapman, D. Kraus, T. R. Preston, Z. A. Moldabekov, N. Schlünzen, A. Cangi, T. Döppner, and J. Vorberger, “Imaginary-time correlation function thermometry: A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data,” Phys. Plasmas 30, 042707 (2023).10.1063/5.0139560
|
[111] |
T. Dornheim, T. Döppner, A. D. Baczewski, P. Tolias, M. P. Böhme, Z. A. Moldabekov, Th. Gawne, D. Ranjan, D. A. Chapman, M. J. MacDonald, T. R. Preston, D. Kraus, and J. Vorberger, “X-ray Thomson scattering absolute intensity from the f-sum rule in the imaginary-time domain,” Sci. Rep. 14, 14377 (2024).10.1038/s41598-024-64182-6
|
[112] |
S. Ichimaru, H. Iyetomi, and S. Tanaka, “Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlations,” Phys. Rep. 149, 91–205 (1987).10.1016/0370-1573(87)90125-6
|
[113] |
P. Hamann, T. Dornheim, J. Vorberger, Z. A. Moldabekov, and M. Bonitz, “Dynamic properties of the warm dense electron gas based on ab initio path integral Monte Carlo simulations,” Phys. Rev. B 102, 125150 (2020).10.1103/physrevb.102.125150
|
[114] |
P. Hamann, J. Vorberger, T. Dornheim, Z. A. Moldabekov, and M. Bonitz, “Ab initio results for the plasmon dispersion and damping of the warm dense electron gas,” Contrib. Plasma Phys. 60, e202000147 (2020).10.1002/ctpp.202000147
|
[115] |
C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford Graduate Texts (Oxford University Press, Oxford, 2012).
|
[116] |
S. Moroni, D. M. Ceperley, and G. Senatore, “Static response from quantum Monte Carlo calculations,” Phys. Rev. Lett. 69, 1837 (1992).10.1103/physrevlett.69.1837
|
[117] |
S. Moroni, D. M. Ceperley, and G. Senatore, “Static response and local field factor of the electron gas,” Phys. Rev. Lett. 75, 689 (1995).10.1103/physrevlett.75.689
|
[118] |
T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas,” Phys. Rev. E 96, 023203 (2017).10.1103/physreve.96.023203
|
[119] |
S. Groth, T. Dornheim, and M. Bonitz, “Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas,” J. Chem. Phys. 147, 164108 (2017).10.1063/1.4999907
|
[120] |
P. Tolias, T. Dornheim, Z. Moldabekov, and J. Vorberger, “Unravelling the nonlinear ideal density response of many-body systems,” Europhys. Lett. 142, 44001 (2023).10.1209/0295-5075/acd3a6
|
[121] |
T. Dornheim, J. Vorberger, and M. Bonitz, “Nonlinear electronic density response in warm dense matter,” Phys. Rev. Lett. 125, 085001 (2020).10.1103/physrevlett.125.085001
|
[122] |
Z. Moldabekov, T. Dornheim, M. Böhme, J. Vorberger, and A. Cangi, “The relevance of electronic perturbations in the warm dense electron gas,” J. Chem. Phys. 155, 124116 (2021).10.1063/5.0062325
|
[123] |
Z. A. Moldabekov, X. Shao, M. Pavanello, J. Vorberger, F. Graziani, and T. Dornheim, “Imposing correct jellium response is key to predict the density response by orbital-free DFT,” Phys. Rev. B 108, 235168 (2023).10.1103/physrevb.108.235168
|
[124] |
S. Groth, T. Dornheim, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas,” Phys. Rev. B 99, 235122 (2019).10.1103/physrevb.99.235122
|
[125] |
T. Dornheim, T. Sjostrom, S. Tanaka, and J. Vorberger, “Strongly coupled electron liquid: Ab initio path integral Monte Carlo simulations and dielectric theories,” Phys. Rev. B 101, 045129 (2020).10.1103/physrevb.101.045129
|
[126] |
T. Dornheim, Z. A. Moldabekov, J. Vorberger, and S. Groth, “Ab initio path integral Monte Carlo simulation of the uniform electron gas in the high energy density regime,” Plasma Phys. Controlled Fusion 62, 075003 (2020).10.1088/1361-6587/ab8bb4
|
[127] |
P. Tolias, F. Lucco Castello, and T. Dornheim, “Integral equation theory based dielectric scheme for strongly coupled electron liquids,” J. Chem. Phys. 155, 134115 (2021).10.1063/5.0065988
|
[128] |
T. Dornheim, J. Vorberger, Z. Moldabekov, G. Röpke, and W.-D. Kraeft, “The uniform electron gas at high temperatures: Ab initio path integral Monte Carlo simulations and analytical theory,” High Energy Density Phys. 45, 101015 (2022).10.1016/j.hedp.2022.101015
|
[129] |
T. Dornheim, M. Böhme, Z. A. Moldabekov, J. Vorberger, and M. Bonitz, “Density response of the warm dense electron gas beyond linear response theory: Excitation of harmonics,” Phys. Rev. Res. 3, 033231 (2021).10.1103/physrevresearch.3.033231
|
[130] |
T. Dornheim, P. Tolias, Z. A. Moldabekov, and J. Vorberger, “Energy response and spatial alignment of the perturbed electron gas,” J. Chem. Phys. 158, 164108 (2023).10.1063/5.0146503
|
[131] |
A. A. Kugler, “Theory of the local field correction in an electron gas,” J. Stat. Phys. 12, 35 (1975).10.1007/bf01024183
|
[132] |
K. Tago, K. Utsumi, and S. Ichimaru, “Local field effect in strongly coupled, classical one-component plasma,” Prog. Theor. Phys. 65, 54–65 (1981).10.1143/ptp.65.54
|
[133] |
T. Dornheim, J. Vorberger, Z. A. Moldabekov, and P. Tolias, “Spin-resolved density response of the warm dense electron gas,” Phys. Rev. Res. 4, 033018 (2022).10.1103/physrevresearch.4.033018
|
[134] |
D. Kremp, M. Schlanges, and W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Heidelberg, 2005).
|
[135] |
M. J. MacDonald, A. M. Saunders, B. Bachmann, M. Bethkenhagen, L. Divol, M. D. Doyle, L. B. Fletcher, S. H. Glenzer, D. Kraus, O. L. Landen, H. J. LeFevre, S. R. Klein, P. Neumayer, R. Redmer, M. Schörner, N. Whiting, R. W. Falcone, and T. Döppner, “Demonstration of a laser-driven, narrow spectral bandwidth x-ray source for collective x-ray scattering experiments,” Phys. Plasmas 28, 032708 (2021).10.1063/5.0030958
|
[136] |
E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, “Ab initio low-energy dynamics of superfluid and solid 4He,” Phys. Rev. B 82, 174510 (2010).10.1103/physrevb.82.174510
|
[137] |
J. Vorberger and D. O. Gericke, “Ab initio approach to model x-ray diffraction in warm dense matter,” Phys. Rev. E 91, 033112 (2015).10.1103/physreve.91.033112
|
[138] |
T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer, and D. O. Gericke, “Observing the onset of pressure-driven K-shell delocalization,” Nature 618, 270–275 (2023).10.1038/s41586-023-05996-8
|
[139] |
T. Dornheim, M. Böhme, B. Militzer, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the momentum distribution of the uniform electron gas at finite temperature without fixed nodes,” Phys. Rev. B 103, 205142 (2021).10.1103/physrevb.103.205142
|
[140] | |
[141] |
M. Boninsegni, N. V. Prokofev, and B. V. Svistunov, “Worm algorithm for continuous-space path integral Monte Carlo simulations,” Phys. Rev. Lett. 96, 070601 (2006).10.1103/physrevlett.96.070601
|
[142] | |
[143] |
T. Dornheim, D. C. Wicaksono, J. E. Suarez-Cardona, P. Tolias, M. P. Böhme, Z. A. Moldabekov, M. Hecht, and J. Vorberger, “Extraction of the frequency moments of spectral densities from imaginary-time correlation function data,” Phys. Rev. B 107, 155148 (2023).10.1103/physrevb.107.155148
|
[144] |
T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter,” Phys. Rev. Lett. 121, 255001 (2018).10.1103/physrevlett.121.255001
|
[145] |
A. A. Kugler, “Bounds for some equilibrium properties of an electron gas,” Phys. Rev. A 1, 1688 (1970).10.1103/physreva.1.1688
|
[146] |
T. Dornheim, M. P. Böhme, Z. A. Moldabekov, and J. Vorberger, “Electronic density response of warm dense hydrogen on the nanoscale,” Phys. Rev. E 108, 035204 (2023).10.1103/physreve.108.035204
|
[147] |
S. Mazevet, M. P. Desjarlais, L. A. Collins, J. D. Kress, and N. H. Magee, “Simulations of the optical properties of warm dense aluminum,” Phys. Rev. E 71, 016409 (2005).10.1103/physreve.71.016409
|
[148] |
M. P. Desjarlais, J. D. Kress, and L. A. Collins, “Electrical conductivity for warm, dense aluminum plasmas and liquids,” Phys. Rev. E 66, 025401(R) (2002).10.1103/physreve.66.025401
|
[149] |
T. Dornheim, Z. Moldabekov, J. Vorberger, H. Kählert, and M. Bonitz, “Electronic pair alignment and roton feature in the warm dense electron gas,” Commun. Phys. 5, 304 (2022).10.1038/s42005-022-01078-9
|
[150] |
P. Hamann, L. Kordts, A. Filinov, M. Bonitz, T. Dornheim, and J. Vorberger, “Prediction of a roton-type feature in warm dense hydrogen,” Phys. Rev. Res. 5, 033039 (2023).10.1103/physrevresearch.5.033039
|
[151] |
C. A. Kukkonen and K. Chen, “Quantitative electron-electron interaction using local field factors from quantum Monte Carlo calculations,” Phys. Rev. B 104, 195142 (2021).10.1103/physrevb.104.195142
|
[152] |
T. Dornheim, P. Tolias, Z. A. Moldabekov, A. Cangi, and J. Vorberger, “Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations,” J. Chem. Phys. 156, 244113 (2022).10.1063/5.0097768
|
[153] |
A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B. Hansen, and R. J. Magyar, “X-ray Thomson scattering in warm dense matter without the Chihara decomposition,” Phys. Rev. Lett. 116, 115004 (2016).10.1103/physrevlett.116.115004
|
[154] |
M. Jarrell and J. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data,” Phys. Rep. 269, 133–195 (1996).10.1016/0370-1573(95)00074-7
|
[155] |
Y. Xiong and H. Xiong, “Thermodynamics of fermions at any temperature based on parametrized partition function,” Phys. Rev. E 107, 055308 (2023).10.1103/physreve.107.055308
|