Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
Shen Jingxiang, Kang Wei. Fundamental influence of irreversible stress–strain properties in solids on the validity of the ramp loading method[J]. Matter and Radiation at Extremes, 2024, 9(6): 067801. doi: 10.1063/5.0210797
Citation: Shen Jingxiang, Kang Wei. Fundamental influence of irreversible stress–strain properties in solids on the validity of the ramp loading method[J]. Matter and Radiation at Extremes, 2024, 9(6): 067801. doi: 10.1063/5.0210797

Fundamental influence of irreversible stress–strain properties in solids on the validity of the ramp loading method

doi: 10.1063/5.0210797
More Information
  • Author Bio:

    Electronic mail: weikang@pku.edu.cn

  • Corresponding author: a)Author to whom correspondence should be addressed: shenjingxiang93@pku.edu.cn
  • Received Date: 2024-03-27
  • Accepted Date: 2024-07-25
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • The widely used quasi-isentropic ramp loading technique relies heavily on back-calculation methods that convert the measured free-surface velocity profiles to the stress–density states inside the compressed sample. Existing back-calculation methods are based on one-dimensional isentropic hydrodynamic equations, which assume a well-defined functional relationship P(ρ) between the longitudinal stress and density throughout the entire flow field. However, this kind of idealized stress–density relation does not hold in general, because of the complexities introduced by structural phase transitions and/or elastic–plastic response. How and to what extent these standard back-calculation methods may be affected by such inherent complexities is still an unsettled question. Here, we present a close examination using large-scale molecular dynamics (MD) simulations that include the detailed physics of the irreversibly compressed solid samples. We back-calculate the stress–density relation from the MD-simulated rear surface velocity profiles and compare it directly against the stress–density trajectories measured from the MD simulation itself. Deviations exist in the cases studied here, and these turn out to be related to the irreversibility between compression and release. Rarefaction and compression waves are observed to propagate with different sound velocities in some parts of the flow field, violating the basic assumption of isentropic hydrodynamic models and thus leading to systematic back-calculation errors. In particular, the step-like feature of the P(ρ) curve corresponding to phase transition may be completely missed owing to these errors. This kind of mismatch between inherent properties of matter and the basic assumptions of isentropic hydrodynamics has a fundamental influence on how the ramp loading method can be applied.
  • Conflict of Interest
    The authors have no conflicts to discose.
    Jingxiang Shen: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Wei Kang: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    C. A. Hall, “Isentropic compression experiments on the Sandia Z accelerator,” Phys. Plasmas 7, 2069–2075 (2000).10.1063/1.874029
    [2]
    H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59–75 (2016).10.1016/j.mre.2016.01.005
    [3]
    R. F. Smith, J. H. Eggert, A. Jankowski, P. M. Celliers, M. J. Edwards et al., “Stiff response of aluminum under ultrafast shockless compression to 110 GPA,” Phys. Rev. Lett. 98, 065701 (2007).10.1103/physrevlett.98.065701
    [4]
    D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks et al., “Diamond at 800 GPa,” Phys. Rev. Lett. 102, 075503 (2009).10.1103/physrevlett.102.075503
    [5]
    J. Wang, R. F. Smith, J. H. Eggert, D. G. Braun, T. R. Boehly et al., “Ramp compression of iron to 273 GPa,” J. Appl. Phys. 114, 023513 (2013).10.1063/1.4813091
    [6]
    Q. Xue, Z. Wang, S. Jiang, F. Wang, X. Ye et al., “Laser-direct-driven quasi-isentropic experiments on aluminum,” Phys. Plasmas 21, 072709 (2014).10.1063/1.4890851
    [7]
    R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun et al., “Ramp compression of diamond to five terapascals,” Nature 511, 330–333 (2014).10.1038/nature13526
    [8]
    R. F. Smith, D. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 452–458 (2018).10.1038/s41550-018-0437-9
    [9]
    A. M. Buyko, G. G. Ivanova, and I. V. Morozova, “Simulations of alt-like explosive magnetic devices for ramp compression of materials by magnetically imploded liners,” Matter Radiat. Extremes 5, 047402 (2020).10.1063/1.5140621
    [10]
    J. B. Aidun and Y. M. Gupta, “Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves,” J. Appl. Phys. 69, 6998–7014 (1991).10.1063/1.347639
    [11]
    [12]
    D. Hayes and C. Hall, “Correcting free surface effects by integrating the equations of motion backward in space,” AIP Conf. Proc. 620, 1177–1180 (2002).10.1063/1.1483747
    [13]
    J. R. Maw, “A characteristics code for analysis of isentropic compression experiments,” AIP Conf. Proc. 706, 1217–1220 (2004).10.1063/1.1780457
    [14]
    S. D. Rothman and J. R. Maw, “Characteristics analysis of isentropic compression experiments (ice),” J. Phys. IV France 134, 745–750 (2006).10.1051/jp4:2006134115
    [15]
    S. D. Rothman, J.-P. Davis, J. Maw, C. M. Robinson, K. Parker et al., “Measurement of the principal isentropes of lead and lead–antimony alloy to ∼400 kbar by quasi-isentropic compression,” J. Phys. D: Appl. Phys. 38, 733 (2005).10.1088/0022-3727/38/5/011
    [16]
    D. C. Swift, D. E. Fratanduono, R. G. Kraus, and E. A. Dowling, “Non-iterative characteristics analysis for high-pressure ramp loading,” Rev. Sci. Instrum. 90, 093903 (2019).10.1063/1.5063830
    [17]
    D. E. Fratanduono, R. F. Smith, D. G. Braun, J. R. Patterson, R. G. Kraus et al., “The effect of nearly steady shock waves in ramp compression experiments,” J. Appl. Phys. 117, 245903 (2015).10.1063/1.4922583
    [18]
    S. D. Rothman, S. J. Ali, J. L. Brown, J. H. Eggert, and C. T. Seagle, “Shock-ramp analysis test problem,” J. Appl. Phys. 129, 185901 (2021).10.1063/5.0045562
    [19]
    S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, 2004).
    [20]
    R. C. Hibbeler, Mechanics of Materials, 8th ed. (Prentice Hall, 2010).
    [21]
    J.-P. Davis, J. L. Brown, M. D. Knudson, and R. W. Lemke, “Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum,” J. Appl. Phys. 116, 204903 (2014).10.1063/1.4902863
    [22]
    J.-P. Davis and J. L. Brown, “Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum. I. Inverse Lagrangian analysis,” J. Appl. Phys. 134, 235901 (2023).10.1063/5.0173534
    [23]
    J. M. D. Lane, S. M. Foiles, H. Lim, and J. L. Brown, “Strain-rate dependence of ramp-wave evolution and strength in tantalum,” Phys. Rev. B 94, 064301 (2016).10.1103/physrevb.94.064301
    [24]
    A. P. Moore, J. L. Brown, H. Lim, and J. M. D. Lane, “Verification of experimental dynamic strength methods with atomistic ramp-release simulations,” Phys. Rev. Mater. 2, 053601 (2018).10.1103/physrevmaterials.2.053601
    [25]
    W. Li, E. N. Hahn, P. S. Branicio, X. Yao, X. Zhang et al., “Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression,” Int. J. Plast. 138, 102923 (2021).10.1016/j.ijplas.2020.102923
    [26]
    [27]
    Y. Sun, F. Zhang, M. I. Mendelev, R. M. Wentzcovitch, and K.-M. Ho, “Two-step nucleation of the earth’s inner core,” Proc. Natl. Acad. Sci. U. S. A. 119, e2113059119 (2022).10.1073/pnas.2113059119
    [28]
    P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun. 197, 212–219 (2015).10.1016/j.cpc.2015.07.012
    [29]
    A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown et al., “LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).10.1016/j.cpc.2021.108171
    [30]
    D. C. Swift, R. G. Kraus, E. N. Loomis, D. G. Hicks, J. M. McNaney et al., “Shock formation and the ideal shape of ramp compression waves,” Phys. Rev. E 78, 066115 (2008).10.1103/physreve.78.066115
    [31]
    S. Makarov, S. Dyachkov, T. Pikuz, K. Katagiri, H. Nakamura et al., “Direct imaging of shock wave splitting in diamond at mbar pressure,” Matter Radiat. Extremes 8, 066601 (2023).10.1063/5.0156681
    [32]
    R. F. Smith, T. J. Volz, P. M. Celliers, D. G. Braun, D. C. Swift et al., “Laser-driven ramp-compression experiments on the national ignition facility,” Rev. Sci. Instrum. 94, 083003 (2023).10.1063/5.0150031
    [33]
    R. F. Smith, J. H. Eggert, D. C. Swift, J. Wang, T. S. Duffy et al., “Time-dependence of the alpha to epsilon phase transformation in iron,” J. Appl. Phys. 114, 223507 (2013).10.1063/1.4839655
    [34]
    A. Higginbotham, J. Hawreliak, E. M. Bringa, G. Kimminau, N. Park et al., “Molecular dynamics simulations of ramp-compressed copper,” Phys. Rev. B 85, 024112 (2012).10.1103/physrevb.85.024112
    [35]
    A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).10.1088/0965-0393/18/1/015012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (35) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return