Citation: | Lei Zhiyu, Ma Hanghang, Zhang Xiaobo, Yu Lin, Zhang Yihang, Li Yutong, Weng Suming, Chen Min, Zhang Jie, Sheng Zhengming. Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap[J]. Matter and Radiation at Extremes, 2024, 9(5): 057202. doi: 10.1063/5.0208901 |
[1] |
D. Higginson, J. McNaney, D. Swift, T. Bartal, D. Hey, R. Kodama, S. Le Pape, A. Mackinnon, D. Mariscal, H. Nakamura et al., “Laser generated neutron source for neutron resonance spectroscopy,” Phys. Plasmas 17, 100701 (2010).10.1063/1.3484218
|
[2] |
G. Zaccai, “How soft is a protein? A protein dynamics force constant measured by neutron scattering,” Science 288, 1604–1607 (2000).10.1126/science.288.5471.1604
|
[3] |
A. Yogo, Z. Lan, Y. Arikawa, Y. Abe, S. Mirfayzi, T. Wei, T. Mori, D. Golovin, T. Hayakawa, N. Iwata et al., “Laser-driven neutron generation realizing single-shot resonance spectroscopy,” Phys. Rev. X 13, 011011 (2023).10.1103/physrevx.13.011011
|
[4] |
L. Gray and J. Read, “Treatment of cancer by fast neutrons,” Nature 152, 53–54 (1943).10.1038/152053a0
|
[5] |
R. Reifarth, C. Lederer, and F. Käppeler, “Neutron reactions in astrophysics,” J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014).10.1088/0954-3899/41/5/053101
|
[6] |
S. Chen, F. Negoita, K. Spohr, E. d’Humières, I. Pomerantz, and J. Fuchs, “Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory,” Matter Radiat. Extremes 4, 054402 (2019).10.1063/1.5081666
|
[7] |
M. Günther, O. Rosmej, P. Tavana, M. Gyrdymov, A. Skobliakov, A. Kantsyrev, S. Zähter, N. Borisenko, A. Pukhov, and N. Andreev, “Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science,” Nat. Commun. 13, 170 (2022).10.1038/s41467-021-27694-7
|
[8] |
K. Ledingham, I. Spencer, T. McCanny, R. Singhal, M. Santala, E. Clark, I. Watts, F. Beg, M. Zepf, K. Krushelnick et al., “Photonuclear physics when a multiterawatt laser pulse interacts with solid targets,” Phys. Rev. Lett. 84, 899 (2000).10.1103/physrevlett.84.899
|
[9] |
I. Pomerantz, E. Mccary, A. R. Meadows, A. Arefiev, A. C. Bernstein, C. Chester, J. Cortez, M. E. Donovan, G. Dyer, E. W. Gaul et al., “Ultrashort pulsed neutron source,” Phys. Rev. Lett. 113, 184801 (2014).10.1103/physrevlett.113.184801
|
[10] |
C. Toupin, E. Lefebvre, and G. Bonnaud, “Neutron emission from a deuterated solid target irradiated by an ultraintense laser pulse,” Phys. Plasmas 8, 1011–1021 (2001).10.1063/1.1344919
|
[11] |
M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel et al., “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
|
[12] |
J. Wei, H. Chen, Y. Chen, Y. Chen, Y. Chi, C. Deng, H. Dong, L. Dong, S. Fang, J. Feng et al., “China spallation neutron source: Design, R&D, and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 600, 10–13 (2009).10.1016/j.nima.2008.11.017
|
[13] |
X. Jiang, D. Zou, Z. Zhao, L. Hu, P. Han, J. Yu, T. Yu, Y. Yin, and F. Shao, “Microstructure-assisted laser-driven photonuclear pulsed neutron source,” Phys. Rev. Appl. 15, 034032 (2021).10.1103/physrevapplied.15.034032
|
[14] |
A. Yogo, Y. Arikawa, Y. Abe, S. Mirfayzi, T. Hayakawa, K. Mima, and R. Kodama, “Advances in laser-driven neutron sources and applications,” Eur. Phys. J. A 59, 191 (2023).10.1140/epja/s10050-023-01083-8
|
[15] |
Y. Li, J. Feng, W. Wang, J. Tan, X. Ge, F. Liu, W. Yan, G. Zhang, C. Fu, and L. Chen, “Micro-size picosecond-duration fast neutron source driven by a laser–plasma wakefield electron accelerator,” High Power Laser Sci. Eng. 10, e33 (2022).10.1017/hpl.2022.27
|
[16] |
F. Mirani, A. Maffini, and M. Passoni, “Laser-driven neutron generation with near-critical targets and application to materials characterization,” Phys. Rev. Appl. 19, 044020 (2023).10.1103/physrevapplied.19.044020
|
[17] |
X. Jiao, J. Shaw, T. Wang, X. Wang, H. Tsai, P. Poth, I. Pomerantz, L. Labun, T. Toncian, M. Downer, and B. Hegelich, “A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration,” Matter Radiat. Extremes 2, 296–302 (2017).10.1016/j.mre.2017.10.003
|
[18] |
B. Martinez, S. Chen, S. Bolaños, N. Blanchot, G. Boutoux, W. Cayzac, C. Courtois, X. Davoine, A. Duval, V. Horny et al., “Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams,” Matter Radiat. Extremes 7, 024401 (2022).10.1063/5.0060582
|
[19] |
K.-Y. Feng, F.-Q. Shao, X.-R. Jiang, D.-B. Zou, L.-X. Hu, G.-B. Zhang, X.-H. Yang, Y. Yin, Y.-Y. Ma, and T.-P. Yu, “Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil,” Acta Phys. Sin. 72, 185201 (2023).10.7498/aps.72.20230706
|
[20] |
G. Ren, J. Yan, J. Liu, K. Lan, Y. Chen, W. Huo, Z. Fan, X. Zhang, J. Zheng, Z. Chen et al., “Neutron generation by laser-driven spherically convergent plasma fusion,” Phys. Rev. Lett. 118, 165001 (2017).10.1103/physrevlett.118.165001
|
[21] |
J. Zweiback, T. Cowan, R. Smith, J. Hartley, R. Howell, C. Steinke, G. Hays, K. Wharton, J. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640 (2000).10.1103/physrevlett.85.3640
|
[22] |
D. Higginson, J. McNaney, D. Swift, G. Petrov, J. Davis, J. Frenje, L. Jarrott, R. Kodama, K. Lancaster, A. Mackinnon et al., “Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions,” Phys. Plasmas 18, 100703 (2011).10.1063/1.3654040
|
[23] |
T. Mori, A. Yogo, Y. Arikawa, T. Hayakawa, S. R. Mirfayzi, Z. Lan, T. Wei, Y. Abe, M. Nakai, K. Mima et al., “Feasibility study of laser-driven neutron sources for pharmaceutical applications,” High Power Laser Sci. Eng. 11, e20 (2023).10.1017/hpl.2023.4
|
[24] |
Q. Dong, Z.-M. Sheng, M. Yu, and J. Zhang, “Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils,” Phys. Rev. E 68, 026408 (2003).10.1103/physreve.68.026408
|
[25] |
Y. Yao, S. He, Z. Lei, T. Ye, Y. Xie, Z. Deng, B. Cui, W. Qi, L. Yang, S. Zhu et al., “High-flux neutron generator based on laser-driven collisionless shock acceleration,” Phys. Rev. Lett. 131, 025101 (2023).10.1103/physrevlett.131.025101
|
[26] |
Y. Li, Z. Sheng, Y. Ma, Z. Jin, J. Zhang, Z. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. Tanaka et al., “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).10.1103/physreve.72.066404
|
[27] |
Y. Zhang, W.-M. Wang, Y. Li, Z. Zhang, P. McKenna, D. Neely, and J. Zhang, “Effects of internal target structures on laser-driven neutron production,” Nucl. Fusion 59, 076032 (2019).10.1088/1741-4326/ab1cda
|
[28] |
Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673–680 (2003).10.1007/s00340-003-1324-2
|
[29] |
P. Zhang, N. Saleh, S. Chen, Z. Sheng, and D. Umstadter, “An optical trap for relativistic plasma,” Phys. Plasmas 10, 2093–2099 (2003).10.1063/1.1566033
|
[30] |
H. Ma, S. Weng, P. Li, X. Li, Y. Wang, S. Yew, M. Chen, P. McKenna, and Z. Sheng, “Growth, saturation, and collapse of laser-driven plasma density gratings,” Phys. Plasmas 27, 073105 (2020).10.1063/5.0004529
|
[31] |
H. Yang, J. Wang, S. Luan, K. Feng, W. Wang, and R. Li, “Generating a tunable narrow electron beam comb via laser-driven plasma grating,” Matter Radiat. Extremes 8, 064001 (2023).10.1063/5.0151883
|
[32] |
H. Peng, C. Riconda, M. Grech, J.-Q. Su, and S. Weber, “Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description,” Phys. Rev. E 100, 061201 (2019).10.1103/physreve.100.061201
|
[33] |
Q. Zhu, K. Zhou, J. Su, N. Xie, X. Huang, X. Zeng, X. Wang, X. Wang, Y. Zuo, D. Jiang et al., “The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams,” Laser Phys. Lett. 15, 015301 (2017).10.1088/1612-202x/aa94e9
|
[34] |
S. Gales, K. Tanaka, D. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. Ur, D. Ursescu, I. Andrei, S. Ataman et al., “The extreme light infrastructure—nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).10.1088/1361-6633/aacfe8
|
[35] |
T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. J. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|
[36] |
L. Yin, B. Albright, B. Hegelich, K. J. Bowers, K. Flippo, T. Kwan, and J. Fernández, “Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets,” Phys. Plasmas 14, 056706 (2007).10.1063/1.2436857
|
[37] |
L. Yin, B. Albright, K. Bowers, D. Jung, J. Fernández, and B. Hegelich, “Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets,” Phys. Rev. Lett. 107, 045003 (2011).10.1103/physrevlett.107.045003
|
[38] |
V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. Bulanov, “Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil,” Phys. Plasmas 5, 2727–2741 (1998).10.1063/1.872961
|
[39] |
X. Yan, T. Tajima, M. Hegelich, L. Yin, and D. Habs, “Theory of laser ion acceleration from a foil target of nanometer thickness,” Appl. Phys. B 98, 711–721 (2010).10.1007/s00340-009-3707-5
|
[40] |
S. Wilks, W. Kruer, M. Tabak, and A. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
|
[41] |
P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
|
[42] |
W. Qi, X. Zhang, B. Zhang, S. He, F. Zhang, B. Cui, M. Yu, Z. Dai, X. Peng, and Y. Gu, “Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets,” Phys. Plasmas 26, 043103 (2019).10.1063/1.5079773
|