Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
Lei Zhiyu, Ma Hanghang, Zhang Xiaobo, Yu Lin, Zhang Yihang, Li Yutong, Weng Suming, Chen Min, Zhang Jie, Sheng Zhengming. Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap[J]. Matter and Radiation at Extremes, 2024, 9(5): 057202. doi: 10.1063/5.0208901
Citation: Lei Zhiyu, Ma Hanghang, Zhang Xiaobo, Yu Lin, Zhang Yihang, Li Yutong, Weng Suming, Chen Min, Zhang Jie, Sheng Zhengming. Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap[J]. Matter and Radiation at Extremes, 2024, 9(5): 057202. doi: 10.1063/5.0208901

Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap

doi: 10.1063/5.0208901
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: zmsheng@sjtu.edu.cn
  • Received Date: 2024-03-18
  • Accepted Date: 2024-06-10
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-01
  • A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed. This scheme is based on bulk acceleration of deuteron ions in an optical trap or density grating formed by two counter-propagating laser pulses at an intensity of 1016W/cm2 in a near-critical-density plasma. The deuterons are first pre-accelerated to an energy of tens of keV in the ambipolar fields formed in the optical trap. Their energy is boosted to the MeV level by another one or two laser pulses at an intensity of 1020W/cm2, enabling fusion reactions to be triggered with high efficiency. In contrast to previously proposed pitcher–catcher configurations, our scheme can provide spatially periodic acceleration structures and effective collisions between deuterons inside the whole target volume. Subsequently, neutrons are generated directly inside the optical trap. Our simulations show that neutron pulses with energy 2–8 MeV, yield 1018–1019n/s, and total number 106–107 in a duration 400 fs can be obtained with a 25 μm target. Moreover, the neutron pulses exhibit unique angularly dependent energy spectra and flux distributions, predominantly along the axis of the energy-boosting lasers. Such microsize femtosecond neutron pulses may find many applications, such as high-resolution fast neutron imaging and nuclear physics research.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Zhiyu Lei: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Visualization (lead); Writing – original draft (lead). Hanghang Ma: Formal analysis (equal); Writing – review & editing (equal). Xiaobo Zhang: Formal analysis (equal); Writing – review & editing (equal). Lin Yu: Formal analysis (equal). Yihang Zhang: Formal analysis (equal); Methodology (equal). Yutong Li: Writing – review & editing (equal). Suming Weng: Conceptualization (equal); Formal analysis (equal); Writing – review & editing (equal). Min Chen: Conceptualization (equal); Formal analysis (equal); Writing – review & editing (equal). Jie Zhang: Writing – review & editing (supporting). Zhengming Sheng: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (lead).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    D. Higginson, J. McNaney, D. Swift, T. Bartal, D. Hey, R. Kodama, S. Le Pape, A. Mackinnon, D. Mariscal, H. Nakamura et al., “Laser generated neutron source for neutron resonance spectroscopy,” Phys. Plasmas 17, 100701 (2010).10.1063/1.3484218
    [2]
    G. Zaccai, “How soft is a protein? A protein dynamics force constant measured by neutron scattering,” Science 288, 1604–1607 (2000).10.1126/science.288.5471.1604
    [3]
    A. Yogo, Z. Lan, Y. Arikawa, Y. Abe, S. Mirfayzi, T. Wei, T. Mori, D. Golovin, T. Hayakawa, N. Iwata et al., “Laser-driven neutron generation realizing single-shot resonance spectroscopy,” Phys. Rev. X 13, 011011 (2023).10.1103/physrevx.13.011011
    [4]
    L. Gray and J. Read, “Treatment of cancer by fast neutrons,” Nature 152, 53–54 (1943).10.1038/152053a0
    [5]
    R. Reifarth, C. Lederer, and F. Käppeler, “Neutron reactions in astrophysics,” J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014).10.1088/0954-3899/41/5/053101
    [6]
    S. Chen, F. Negoita, K. Spohr, E. d’Humières, I. Pomerantz, and J. Fuchs, “Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory,” Matter Radiat. Extremes 4, 054402 (2019).10.1063/1.5081666
    [7]
    M. Günther, O. Rosmej, P. Tavana, M. Gyrdymov, A. Skobliakov, A. Kantsyrev, S. Zähter, N. Borisenko, A. Pukhov, and N. Andreev, “Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science,” Nat. Commun. 13, 170 (2022).10.1038/s41467-021-27694-7
    [8]
    K. Ledingham, I. Spencer, T. McCanny, R. Singhal, M. Santala, E. Clark, I. Watts, F. Beg, M. Zepf, K. Krushelnick et al., “Photonuclear physics when a multiterawatt laser pulse interacts with solid targets,” Phys. Rev. Lett. 84, 899 (2000).10.1103/physrevlett.84.899
    [9]
    I. Pomerantz, E. Mccary, A. R. Meadows, A. Arefiev, A. C. Bernstein, C. Chester, J. Cortez, M. E. Donovan, G. Dyer, E. W. Gaul et al., “Ultrashort pulsed neutron source,” Phys. Rev. Lett. 113, 184801 (2014).10.1103/physrevlett.113.184801
    [10]
    C. Toupin, E. Lefebvre, and G. Bonnaud, “Neutron emission from a deuterated solid target irradiated by an ultraintense laser pulse,” Phys. Plasmas 8, 1011–1021 (2001).10.1063/1.1344919
    [11]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel et al., “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
    [12]
    J. Wei, H. Chen, Y. Chen, Y. Chen, Y. Chi, C. Deng, H. Dong, L. Dong, S. Fang, J. Feng et al., “China spallation neutron source: Design, R&D, and outlook,” Nucl. Instrum. Methods Phys. Res., Sect. A 600, 10–13 (2009).10.1016/j.nima.2008.11.017
    [13]
    X. Jiang, D. Zou, Z. Zhao, L. Hu, P. Han, J. Yu, T. Yu, Y. Yin, and F. Shao, “Microstructure-assisted laser-driven photonuclear pulsed neutron source,” Phys. Rev. Appl. 15, 034032 (2021).10.1103/physrevapplied.15.034032
    [14]
    A. Yogo, Y. Arikawa, Y. Abe, S. Mirfayzi, T. Hayakawa, K. Mima, and R. Kodama, “Advances in laser-driven neutron sources and applications,” Eur. Phys. J. A 59, 191 (2023).10.1140/epja/s10050-023-01083-8
    [15]
    Y. Li, J. Feng, W. Wang, J. Tan, X. Ge, F. Liu, W. Yan, G. Zhang, C. Fu, and L. Chen, “Micro-size picosecond-duration fast neutron source driven by a laser–plasma wakefield electron accelerator,” High Power Laser Sci. Eng. 10, e33 (2022).10.1017/hpl.2022.27
    [16]
    F. Mirani, A. Maffini, and M. Passoni, “Laser-driven neutron generation with near-critical targets and application to materials characterization,” Phys. Rev. Appl. 19, 044020 (2023).10.1103/physrevapplied.19.044020
    [17]
    X. Jiao, J. Shaw, T. Wang, X. Wang, H. Tsai, P. Poth, I. Pomerantz, L. Labun, T. Toncian, M. Downer, and B. Hegelich, “A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration,” Matter Radiat. Extremes 2, 296–302 (2017).10.1016/j.mre.2017.10.003
    [18]
    B. Martinez, S. Chen, S. Bolaños, N. Blanchot, G. Boutoux, W. Cayzac, C. Courtois, X. Davoine, A. Duval, V. Horny et al., “Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams,” Matter Radiat. Extremes 7, 024401 (2022).10.1063/5.0060582
    [19]
    K.-Y. Feng, F.-Q. Shao, X.-R. Jiang, D.-B. Zou, L.-X. Hu, G.-B. Zhang, X.-H. Yang, Y. Yin, Y.-Y. Ma, and T.-P. Yu, “Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil,” Acta Phys. Sin. 72, 185201 (2023).10.7498/aps.72.20230706
    [20]
    G. Ren, J. Yan, J. Liu, K. Lan, Y. Chen, W. Huo, Z. Fan, X. Zhang, J. Zheng, Z. Chen et al., “Neutron generation by laser-driven spherically convergent plasma fusion,” Phys. Rev. Lett. 118, 165001 (2017).10.1103/physrevlett.118.165001
    [21]
    J. Zweiback, T. Cowan, R. Smith, J. Hartley, R. Howell, C. Steinke, G. Hays, K. Wharton, J. Crane, and T. Ditmire, “Characterization of fusion burn time in exploding deuterium cluster plasmas,” Phys. Rev. Lett. 85, 3640 (2000).10.1103/physrevlett.85.3640
    [22]
    D. Higginson, J. McNaney, D. Swift, G. Petrov, J. Davis, J. Frenje, L. Jarrott, R. Kodama, K. Lancaster, A. Mackinnon et al., “Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions,” Phys. Plasmas 18, 100703 (2011).10.1063/1.3654040
    [23]
    T. Mori, A. Yogo, Y. Arikawa, T. Hayakawa, S. R. Mirfayzi, Z. Lan, T. Wei, Y. Abe, M. Nakai, K. Mima et al., “Feasibility study of laser-driven neutron sources for pharmaceutical applications,” High Power Laser Sci. Eng. 11, e20 (2023).10.1017/hpl.2023.4
    [24]
    Q. Dong, Z.-M. Sheng, M. Yu, and J. Zhang, “Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils,” Phys. Rev. E 68, 026408 (2003).10.1103/physreve.68.026408
    [25]
    Y. Yao, S. He, Z. Lei, T. Ye, Y. Xie, Z. Deng, B. Cui, W. Qi, L. Yang, S. Zhu et al., “High-flux neutron generator based on laser-driven collisionless shock acceleration,” Phys. Rev. Lett. 131, 025101 (2023).10.1103/physrevlett.131.025101
    [26]
    Y. Li, Z. Sheng, Y. Ma, Z. Jin, J. Zhang, Z. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. Tanaka et al., “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).10.1103/physreve.72.066404
    [27]
    Y. Zhang, W.-M. Wang, Y. Li, Z. Zhang, P. McKenna, D. Neely, and J. Zhang, “Effects of internal target structures on laser-driven neutron production,” Nucl. Fusion 59, 076032 (2019).10.1088/1741-4326/ab1cda
    [28]
    Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673–680 (2003).10.1007/s00340-003-1324-2
    [29]
    P. Zhang, N. Saleh, S. Chen, Z. Sheng, and D. Umstadter, “An optical trap for relativistic plasma,” Phys. Plasmas 10, 2093–2099 (2003).10.1063/1.1566033
    [30]
    H. Ma, S. Weng, P. Li, X. Li, Y. Wang, S. Yew, M. Chen, P. McKenna, and Z. Sheng, “Growth, saturation, and collapse of laser-driven plasma density gratings,” Phys. Plasmas 27, 073105 (2020).10.1063/5.0004529
    [31]
    H. Yang, J. Wang, S. Luan, K. Feng, W. Wang, and R. Li, “Generating a tunable narrow electron beam comb via laser-driven plasma grating,” Matter Radiat. Extremes 8, 064001 (2023).10.1063/5.0151883
    [32]
    H. Peng, C. Riconda, M. Grech, J.-Q. Su, and S. Weber, “Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description,” Phys. Rev. E 100, 061201 (2019).10.1103/physreve.100.061201
    [33]
    Q. Zhu, K. Zhou, J. Su, N. Xie, X. Huang, X. Zeng, X. Wang, X. Wang, Y. Zuo, D. Jiang et al., “The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams,” Laser Phys. Lett. 15, 015301 (2017).10.1088/1612-202x/aa94e9
    [34]
    S. Gales, K. Tanaka, D. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. Ur, D. Ursescu, I. Andrei, S. Ataman et al., “The extreme light infrastructure—nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).10.1088/1361-6633/aacfe8
    [35]
    T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. J. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [36]
    L. Yin, B. Albright, B. Hegelich, K. J. Bowers, K. Flippo, T. Kwan, and J. Fernández, “Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets,” Phys. Plasmas 14, 056706 (2007).10.1063/1.2436857
    [37]
    L. Yin, B. Albright, K. Bowers, D. Jung, J. Fernández, and B. Hegelich, “Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets,” Phys. Rev. Lett. 107, 045003 (2011).10.1103/physrevlett.107.045003
    [38]
    V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. Bulanov, “Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil,” Phys. Plasmas 5, 2727–2741 (1998).10.1063/1.872961
    [39]
    X. Yan, T. Tajima, M. Hegelich, L. Yin, and D. Habs, “Theory of laser ion acceleration from a foil target of nanometer thickness,” Appl. Phys. B 98, 711–721 (2010).10.1007/s00340-009-3707-5
    [40]
    S. Wilks, W. Kruer, M. Tabak, and A. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [41]
    P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
    [42]
    W. Qi, X. Zhang, B. Zhang, S. He, F. Zhang, B. Cui, M. Yu, Z. Dai, X. Peng, and Y. Gu, “Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets,” Phys. Plasmas 26, 043103 (2019).10.1063/1.5079773
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (126) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return