Citation: | Gao Cong-Zhang, Cai Ying, Huang Cheng-Wu, Zhao Yang, Yin Jian-Wei, Fan Zheng-Feng, Yang Jia-Min, Wang Pei, Zhu Shao-Ping. Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions[J]. Matter and Radiation at Extremes, 2024, 9(6): 067802. doi: 10.1063/5.0208236 |
[1] |
J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
|
[2] |
R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12, 435–448 (2016).10.1038/nphys3736
|
[3] |
H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden, P. Adrian, B. Afeyan, M. Aggleton, L. Aghaian et al., “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065102 (2024).10.1103/physrevlett.132.065102
|
[4] |
O. Hurricane, D. Callahan, D. Casey, A. Christopherson, A. Kritcher, O. Landen, S. Maclaren, R. Nora, P. Patel, J. Ralph et al., “Energy principles of scientific breakeven in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065103 (2024).10.1103/physrevlett.132.065103
|
[5] |
O. Landen, R. Benedetti, D. Bleuel, T. Boehly, D. Bradley, J. Caggiano, D. Callahan, P. Celliers, C. Cerjan, D. Clark et al., “Progress in the indirect-drive national ignition campaign,” Plasma Phys. Controlled Fusion 54, 124026 (2012).10.1088/0741-3335/54/12/124026
|
[6] |
T. R. Dittrich, B. A. Hammel, C. J. Keane, R. McEachern, R. E. Turner, S. W. Haan, and L. J. Suter, “Diagnosis of pusher-fuel mix in indirectly driven nova implosions,” Phys. Rev. Lett. 73, 2324 (1994).10.1103/physrevlett.73.2324
|
[7] |
L. Rayleigh, “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density,” Proc. London Math. Soc. s1-14, 170–177 (1882).10.1112/plms/s1-14.1.170
|
[8] |
G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. R. Soc. London, Ser. A 201, 192–196 (1950).10.1098/rspa.1950.0052
|
[9] |
R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960).10.1002/cpa.3160130207
|
[10] |
E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Fluid Dyn. 4, 101–104 (1972).10.1007/bf01015969
|
[11] |
V. Smalyuk, C. Weber, O. Landen, S. Ali, B. Bachmann, P. Celliers, E. Dewald, A. Fernandez, B. Hammel, G. Hall et al., “Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility,” Plasma Phys. Controlled Fusion 62, 014007 (2019).10.1088/1361-6587/ab49f4
|
[12] |
G. C. Pomraning, “Radiative transfer in Rayleigh–Taylor unstable ICF pellets,” Laser Part. Beams 8, 741–751 (1990).10.1017/s0263034600009137
|
[13] |
S. P. Regan, R. Epstein, B. A. Hammel, L. J. Suter, H. A. Scott, M. A. Barrios, D. K. Bradley, D. A. Callahan, C. Cerjan, G. W. Collins et al., “Hot-spot mix in ignition-scale inertial confinement fusion targets,” Phys. Rev. Lett. 111, 045001 (2013).10.1103/physrevlett.111.045001
|
[14] |
B. Bachmann, J. E. Ralph, A. B. Zylstra, S. A. MacLaren, T. Döppner, D. O. Gericke, G. W. Collins, O. A. Hurricane, T. Ma, J. R. Rygg et al., “Localized mix-induced radiative cooling in a capsule implosion at the National Ignition Facility,” Phys. Rev. E 101, 033205 (2020).10.1103/physreve.101.033205
|
[15] |
D. S. Miller, F. Graziani, and G. Rodrigue, “Benchmarks and models for time-dependent grey radiation transport with material temperature in binary stochastic media,” J. Quant. Spectrosc. Radiat. Transfer 70, 115–128 (2001).10.1016/s0022-4073(00)00128-x
|
[16] |
C. D. Levermore, G. C. Pomraning, D. L. Sanzo, and J. Wong, “Linear transport theory in a random medium,” J. Math. Phys. 27, 2526–2536 (1986).10.1063/1.527320
|
[17] |
M. L. Adams, E. W. Larsen, and G. C. Pomraning, “Benchmark results for particle transport in a binary Markov statistical medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 253–266 (1989).10.1016/0022-4073(89)90072-1
|
[18] |
G. C. Pomraning, Linear Kinetic Theory and Particle Transport in Stochastic Mixtures (World Scientific, 1991), Vol. 7.
|
[19] |
B. Su and G. C. Pomraning, “Limiting correlation lenght solutions in stochastic radiative transfer,” J. Quant. Spectrosc. Radiat. Transfer 51, 893–912 (1994).10.1016/0022-4073(94)90019-1
|
[20] |
G. L. Olson, “Gray radiation transport in multi-dimensional stochastic binary media with material temperature coupling,” J. Quant. Spectrosc. Radiat. Transfer 104, 86–98 (2007).10.1016/j.jqsrt.2006.08.013
|
[21] |
G. L. Olson, “Grey and multigroup radiation transport models for two-dimensional stochastic media with material temperature coupling,” J. Quant. Spectrosc. Radiat. Transfer 113, 325–334 (2012).10.1016/j.jqsrt.2011.12.009
|
[22] |
G. L. Olson, “Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities,” J. Quant. Spectrosc. Radiat. Transfer 168, 57–65 (2016).10.1016/j.jqsrt.2015.09.005
|
[23] |
G. L. Olson, “Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions,” J. Quant. Spectrosc. Radiat. Transfer 189, 243–248 (2017).10.1016/j.jqsrt.2016.12.003
|
[24] | |
[25] | |
[26] |
P. S. Brantley, “Benchmark investigation of a 3D Monte Carlo Levermore–Pomraning algorithm for binary stochastic media,” Trans. Am. Nucl. Soc. 111, 655–658 (2014).
|
[27] | |
[28] | |
[29] |
P. A. Rosen, J. M. Foster, M. J. Taylor, P. A. Keiter, C. C. Smith, J. R. Finke, M. Gunderson, and T. S. Perry, “Experiments to study radiation transport in clumpy media,” Astrophys. Space Sci. 307, 213–217 (2007).10.1007/s10509-006-9235-4
|
[30] |
P. Keiter, M. Gunderson, J. Foster, P. Rosen, A. Comley, M. Taylor, and T. Perry, “Radiation transport in inhomogeneous media,” Phys. Plasmas 15, 056901 (2008).10.1063/1.2927529
|
[31] |
G. Meng, J. She, T. Song, J. Yang, and M. Wang, “Theoretical investigations on x-ray transport in radiation transport experiments on the Shenguang-III prototype laser facility,” Matter Radiat. Extremes 7, 025901 (2022).10.1063/5.0043745
|
[32] |
P. S. Brantley, “A benchmark comparison of Monte Carlo particle transport algorithms for binary stochastic mixtures,” J. Quant. Spectrosc. Radiat. Transfer 112, 599–618 (2011).10.1016/j.jqsrt.2010.06.007
|
[33] |
C.-Z. Gao, Y. Cai, C.-B. Zhang, Z.-Y. Hong, Z.-F. Fan, P. Wang, and J.-G. Wang, “Stochastic radiative transfer in random media. II. Coupling of radiation to material,” Phys. Rev. E 105, 014131 (2022).10.1103/physreve.105.014131
|
[34] | |
[35] |
G. L. Olson, L. H. Auer, and M. L. Hall, “Diffusion, P1, and other approximate forms of radiation transport,” J. Quant. Spectrosc. Radiat. Transfer 64, 619–634 (2000).10.1016/s0022-4073(99)00150-8
|
[36] |
G. L. Olson, D. S. Miller, E. W. Larsen, and J. E. Morel, “Chord length distributions in binary stochastic media in two and three dimensions,” J. Quant. Spectrosc. Radiat. Transfer 101, 269–283 (2006).10.1016/j.jqsrt.2005.11.070
|
[37] |
G. C. Pomraning, The Equations of Radiation Hydrodynamics (Pergamon, Oxford, 1973).
|
[38] |
C.-Z. Gao, C.-B. Zhang, C.-X. Yu, X.-F. Xu, S.-C. Wang, C. Yang, Z.-Y. Hong, Z.-F. Fan, and P. Wang, “Stochastic radiative transfer in random media: Pure absorbing cases,” Phys. Rev. E 102, 022111 (2020).10.1103/physreve.102.022111
|
[39] |
C. D. Levermore, J. Wong, and G. C. Pomraning, “Renewal theory for transport processes in binary statistical mixtures,” J. Math. Phys. 29, 995–1004 (1988).10.1063/1.527997
|
[40] |
B. Su and G. C. Pomraning, “Benchmark results for particle transport in binary non-Markovian mixtures,” J. Quant. Spectrosc. Radiat. Transfer 50, 211–226 (1993).10.1016/0022-4073(93)90119-3
|
[41] |
O. Zuchuat, R. Sanchez, I. Zmijarevic, and F. Malvagi, “Transport in renewal statistical media: Benchmarking and comparison with models,” J. Quant. Spectrosc. Radiat. Transfer 51, 689–722 (1994).10.1016/0022-4073(94)90125-2
|
[42] |
A. K. Prinja and G. L. Olson, “Grey radiative transfer in binary statistical media with material temperature coupling: Asymptotic limits,” J. Quant. Spectrosc. Radiat. Transfer 90, 131–159 (2005).10.1016/j.jqsrt.2004.03.010
|
[43] |
G. L. Olson, “Gray radiation transport models for two-dimensional binary stochastic media with material temperature coupling using spherical harmonics,” J. Quant. Spectrosc. Radiat. Transfer 148, 127–133 (2014).10.1016/j.jqsrt.2014.07.002
|
[44] |
C. Larmier, F.-X. Hugot, F. Malvagi, A. Mazzolo, and A. Zoia, “Benchmark solutions for transport in d-dimensional Markov binary mixtures,” J. Quant. Spectrosc. Radiat. Transfer 189, 133–148 (2017).10.1016/j.jqsrt.2016.11.015
|
[45] |
B. Widom, “Random sequential addition of hard spheres to a volume,” J. Chem. Phys. 44, 3888–3894 (1966).10.1063/1.1726548
|
[46] |
W. Ji, J. L. Conlin, W. R. Martin, J. C. Lee, and F. B. Brown, “Explicit modeling of particle fuel for the very-high temperature gas-cooled reactor,” Trans. Am. Nucl. Soc. 92, 236–238 (2005).
|
[47] |
H. Liu, H. Song, Q. Zhang, G. Zhang, and Y. Zhao, “Validation for equation of state in wide regime: Copper as prototype,” Matter Radiat. Extremes 1, 123 (2016).10.1016/j.mre.2016.03.002
|
[48] |
N. Hirao, Y. Akahama, and Y. Ohishi, “Equations of state of iron and nickel to the pressure at the center of the Earth,” Matter Radiat. Extremes 7, 038403 (2022).10.1063/5.0074340
|
[49] |
J. Colgan, D. P. Kilcrease, N. Magee, M. E. Sherrill, J. Abdallah Jr, P. Hakel, C. J. Fontes, J. A. Guzik, and K. Mussack, “A new generation of Los Alamos opacity tables,” Astrophys. J. 817, 116 (2016).10.3847/0004-637x/817/2/116
|
[50] |
N. Y. Orlov, M. A. Kadatskiy, O. B. Denisov, and K. V. Khishchenko, “Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas,” Matter Radiat. Extremes 4, 054403 (2019).10.1063/1.5096439
|
[51] |
E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport (John Wiley and Sons, Inc., New York, 1984).
|
[52] |
M. Zeyao and F. Lianxiang, “Parallel flux sweep algorithm for neutron transport on unstructured grid,” J. Supercomput. 30, 5–17 (2004).10.1023/b:supe.0000032778.36178.d8
|
[53] |