Citation: | Dong Jinlei, Zhang Xuping, Wang Guiji, Wu Xianqian, Luo Binqiang, Chen Xuemiao, Tan Fuli, Zhao Jianheng, Sun Chengwei. Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression[J]. Matter and Radiation at Extremes, 2024, 9(5): 057802. doi: 10.1063/5.0206773 |
[1] |
E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater. 4, 515 (2019).10.1038/s41578-019-0121-4
|
[2] |
Y. Tang, R. X. Wang, B. Xiao, Z. R. Zhang, S. Li, J. W. Qiao, S. X. Bai, Y. Zhang, and P. K. Liaw, “A review on the dynamic-mechanical behaviors of high-entropy alloys,” Prog. Mater. Sci. 135, 101090 (2023).10.1016/j.pmatsci.2023.101090
|
[3] |
T. W. Zhang, S. G. Ma, D. Zhao, Y. C. Wu, Y. Zhang, Z. H. Wang, and J. W. Qiao, “Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling,” Int. J. Plast. 124, 226 (2020).10.1016/j.ijplas.2019.08.013
|
[4] |
Y. Z. Wang, Z. M. Jiao, G. B. Bian, H. J. Yang, H. W. He, Z. H. Wang, P. K. Liaw, and J. W. Qiao, “Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure,” Mater. Sci. Eng.: A 839, 142837 (2022).10.1016/j.msea.2022.142837
|
[5] |
K. Wang, X. Jin, Y. Zhang, P. K. Liaw, and J. W. Qiao, “Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures,” Phys. Rev. Mater. 5, 113608 (2021).10.1103/physrevmaterials.5.113608
|
[6] |
A. R. Cui, S. C. Hu, S. Zhang, J. C. Cheng, Q. Li, J. Y. Huang, and S. N. Luo, “Spall response of medium-entropy alloy CrCoNi under plate impact,” Int. J. Mech. Sci. 252, 108331 (2023).10.1016/j.ijmecsci.2023.108331
|
[7] |
S. Zhao, S. Yin, X. Liang, F. Cao, Q. Yu, R. Zhang, L. Dai, C. J. Ruestes, R. O. Ritchie, and A. M. Minor, “Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading,” Sci. Adv. 9, eadf8602 (2023).10.1126/sciadv.adf8602
|
[8] |
K. Shi, J. Cheng, L. Cui, J. Qiao, J. Huang, M. Zhang, H. Yang, and Z. Wang, “Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys,” J. Appl. Phys. 132, 205105 (2022).10.1063/5.0130634
|
[9] |
D. E. Fratanduono, M. Millot, D. G. Braun, S. J. Ali, A. Fernandez-Pañella, C. T. Seagle, J. P. Davis, J. L. Brown, Y. Akahama, R. G. Kraus, M. C. Marshall, R. F. Smith, E. F. O’Bannon III, J. M. McNaney, and J. H. Eggert, “Establishing gold and platinum standards to 1 terapascal using shockless compression,” Science 372, 1063 (2021).10.1126/science.abh0364
|
[10] |
D. B. Reisman, A. Toor, R. C. Cauble, C. A. Hall, J. R. Asay, M. D. Knudson, and M. D. Furnish, “Magnetically driven isentropic compression experiments on the Z accelerator,” J. Appl. Phys. 89, 1625 (2001).10.1063/1.1337082
|
[11] |
K. Chen, B. Chen, Y. Cui, Y. Yu, J. Yu, H. Geng, D. Kang, J. Wu, Y. Shen, and J. Dai, “On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass,” Matter Radiat. Extremes 9, 027802 (2024).10.1063/5.0176138
|
[12] |
J. C. Cheng, J. Xu, X. J. Zhao, K. W. Shi, J. Li, Q. Zhang, J. W. Qiao, J. Y. Huang, and S. N. Luo, “Shock compression and spallation of a medium-entropy alloy Fe40Mn20Cr20Ni20,” Mater. Sci. Eng.: A 847, 143311 (2022).10.1016/j.msea.2022.143311
|
[13] |
D. Xu, M. Wang, T. Li, X. Wei, and Y. Lu, “A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys,” Microstructures 2, 2022001 (2022).10.20517/microstructures.2021.10
|
[14] |
X. Zhang, G. Wang, B. Luo, S. N. Bland, F. Tan, F. Zhao, J. Zhao, C. Sun, and C. Liu, “Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate,” J. Alloys Compd. 731, 569 (2018).10.1016/j.jallcom.2017.10.080
|
[15] |
H. K. Mao, B. Chen, J. Chen, K. Li, J. F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59 (2016).10.1016/j.mre.2016.01.005
|
[16] |
F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, “Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,” Acta Mater. 58, 1152 (2010).10.1016/j.actamat.2009.10.058
|
[17] |
S. Nemat-Nasser and R. Kapoor, “Deformation behavior of tantalum and a tantalum tungsten alloy,” Int. J. Plast. 17, 1351 (2001).10.1016/s0749-6419(00)00088-7
|
[18] |
M. Kothari and L. Anand, “Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum,” J. Mech. Phys. Solids 46, 51 (1998).10.1016/s0022-5096(97)00037-9
|
[19] |
R. W. Armstrong and S. M. Walley, “High strain rate properties of metals and alloys,” Int. Mater. Rev. 53, 105 (2008).10.1179/174328008x277795
|
[20] |
R. W. Armstrong and Q. Z. Li, “Dislocation mechanics of high-rate deformations,” Metall. Mater. Trans. A 46, 4438 (2015).10.1007/s11661-015-2779-6
|
[21] |
A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, “Modeling of plasticity and fracture of metals at shock loading,” J. Appl. Phys. 113, 193508 (2013).10.1063/1.4805713
|
[22] |
S. Yao, X. Pei, J. Yu, and Q. Wu, “Assessment of the time-dependent behavior of dislocation multiplication under shock loading,” Int. J. Plast. 158, 103434 (2022).10.1016/j.ijplas.2022.103434
|
[23] |
S. Yao, J. Yu, Y. Cui, X. Pei, Y. Yu, and Q. Wu, “Revisiting the power law characteristics of the plastic shock front under shock loading,” Phys. Rev. Lett. 126, 085503 (2021).10.1103/physrevlett.126.085503
|
[24] |
G. Wang, B. Luo, X. Zhang, J. Zhao, C. Sun, F. Tan, T. Chong, J. Mo, G. Wu, and Y. Tao, “A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading,” Rev. Sci. Instrum. 84, 015117 (2013).10.1063/1.4788935
|
[25] |
B. Q. Luo, X. M. Chen, G. J. Wang, F. L. Tan, G. H. Chen et al., “Dynamic strength measurement of aluminum under magnetically driven ramp wave pressure-shear loading,” Int. J. Impact Eng. 100, 56 (2017).10.1016/j.ijimpeng.2016.10.010
|
[26] |
X. Pan, B. Luo, X. Zhang, H. Peng, X. Chen, G. Wang, F. Tan, J. Zhao, and C. Sun, “Uncertainty quantification of magnetically driven quasi-isentropic compression experiments based on Monte Carlo method,” Explos. Shock Wave 43, 031101 (2022).10.11883/bzycj-2022-0408
|
[27] |
K. V. Khishchenko and A. E. Mayer, “High- and low-entropy layers in solids behind shock and ramp compression waves,” Int. J. Mech. Sci. 189, 105971 (2021).10.1016/j.ijmecsci.2020.105971
|
[28] |
Z. J. Jiang, J. Y. He, H. Y. Wang, H. S. Zhang, Z. P. Lu, and L. H. Dai, “Shock compression response of high entropy alloys,” Mater. Res. Lett. 4, 226 (2016).10.1080/21663831.2016.1191554
|
[29] |
N. B. Zhang, J. Xu, Z. D. Feng, Y. F. Sun, J. Y. Huang, X. J. Zhao, X. H. Yao, S. Chen, L. Lu, and S. N. Luo, “Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi,” J. Mater. Sci. Technol. 128, 1 (2022).10.1016/j.jmst.2022.02.056
|
[30] |
E. N. Hahn and S. J. Fensin, “Influence of defects on the shock Hugoniot of tantalum,” J. Appl. Phys. 125, 215902 (2019).10.1063/1.5096526
|
[31] |
J. C. F. Millett, N. K. Bourne, Z. Rosenberg, and J. E. Field, “Shear strength measurements in a tungsten alloy during shock loading,” J. Appl. Phys. 86, 6707 (1999).10.1063/1.371748
|
[32] |
B. Pang, S. Case, I. P. Jones, J. C. F. Millett, G. Whiteman et al., “The defect evolution in shock loaded tantalum single crystals,” Acta Mater. 148, 482 (2018).10.1016/j.actamat.2017.11.052
|
[33] |
V. F. Nesterenko, M. A. Meyers, J. C. LaSalvia et al., “Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum,” Mater. Sci. Eng.: A 229, 23 (1997).10.1016/s0921-5093(96)10847-9
|
[34] |
Y. Yang, S. Yang, and H. Wang, “Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy,” Mater. Sci. Eng. A 802, 140440 (2021).10.1016/j.msea.2020.140440
|
[35] |
M. C. Hawkins, S. Thomas, R. S. Hixson, J. Gigax, N. Li, C. Liu, J. A. Valdez, and S. Fensin, “Dynamic properties of FeCrMnNi, a high entropy alloy,” Mater. Sci. Eng.: A 840, 142906 (2022).10.1016/j.msea.2022.142906
|
[36] |
L. T. W. Smith, Y. Su, S. Xu, A. Hunter, and I. J. Beyerlein, “The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy,” Int. J. Plast. 134, 102850 (2020).10.1016/j.ijplas.2020.102850
|
[37] |
Q. J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nat. Commun. 10, 3563 (2019).10.1038/s41467-019-11464-7
|
[38] |
J. Ding, Q. Yu, M. Asta, and R. O. Ritchie, “Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys,” Proc. Natl. Acad. Sci. U. S. A. 115, 8919 (2018).10.1073/pnas.1808660115
|
[39] |
W. R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, and I. J. Beyerlein, “Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi,” Acta Mater. 199, 352 (2020).10.1016/j.actamat.2020.08.044
|
[40] |
F. X. Zhang, S. J. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J. Y. P. Ko, D. C. Pagan, J. C. Neuefeind, W. J. Weber, and Y. W. Zhang, “Local structure and short-range order in a NiCoCr solid solution alloy,” Phys. Rev. Lett. 118, 205501 (2017).10.1103/physrevlett.118.205501
|
[41] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie, and A. M. Minor, “Short-range order and its impact on the CrCoNi medium-entropy alloy,” Nature 581, 283 (2020).10.1038/s41586-020-2275-z
|
[42] |
L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang, H. Zhou, F. Yuan, X. Wu, Z. Cheng, and E. Ma, “Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy,” Acta Mater. 224, 117490 (2022).10.1016/j.actamat.2021.117490
|
[43] |
Y. Tian and F. Chen, “Short-range order-dependent dislocation mobilities in CrCoNi medium entropy alloy: Atomistic simulations and modeling,” Int. J. Plast. 172, 103859 (2024).10.1016/j.ijplas.2023.103859
|
[44] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E. P. George, “Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi,” Acta Mater. 128, 292 (2017).10.1016/j.actamat.2017.02.036
|
[45] |
D. Qi, B. Fu, K. Du, T. Yao, C. Cui, J. Zhang, and H. Ye, “Temperature effects on the transition from Lomer-Cottrell locks to deformation twinning in a Ni-Co-based superalloy,” Scr. Mater. 125, 24 (2016).10.1016/j.scriptamat.2016.07.033
|
[46] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E. P. George, Q. Yu, S. X. Mao, and R. O. Ritchie, “Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy,” Nat. Commun. 8, 14390 (2017).10.1038/ncomms14390
|
[47] |
Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, and X. L. Wu, “Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures,” Acta Mater. 148, 407 (2018).10.1016/j.actamat.2018.02.016
|
[48] |
J. Meng, Y. Qiao, Y. Chen, T. W. Liu, T. Li, H. Y. Wang, and L. H. Dai, “A high-entropy alloy syntactic foam with exceptional cryogenic and dynamic properties,” Mater. Sci. Eng.: A 876, 145146 (2023).10.1016/j.msea.2023.145146
|
[49] |
X. Li, S. Sun, Y. Zou, Q. Zhu, Y. Tian, and J. Wang, “Twin-coupled shear bands in an ultrafine-grained CoCrFeMnNi high-entropy alloy deformed at 77 K,” Mater. Res. Lett. 10, 385 (2022).10.1080/21663831.2022.2053220
|
[50] |
A. L. Greer, Y. Q. Cheng, and E. Ma, “Shear bands in metallic glasses,” Mater. Sci. Eng.: R: Rep. 74, 71 (2013).10.1016/j.mser.2013.04.001
|
[51] |
S. De, A. R. Zamiri, and Rahul, “A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX,” J. Mech. Phys. Solids 64, 287 (2014).10.1016/j.jmps.2013.10.012
|
[52] |
J. P. Hirth, H. M. Zbib, and J. Lothe, “Forces on high velocity dislocations,” Modell. Simul. Mater. Sci. Eng. 6, 165 (1999).10.1088/0965-0393/6/2/006
|
[53] |
R. A. Austin and D. L. McDowell, “Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum,” Int. J. Plast 32–33, 134 (2012).10.1016/j.ijplas.2011.11.002
|
[54] |
S. Yao, X. Pei, Z. Liu, J. Yu, Y. Yu, and Q. Wu, “Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model,” Mech. Mater. 140, 103211 (2020).10.1016/j.mechmat.2019.103211
|
[55] |
R. A. Austin and D. L. McDowell, “A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates,” Int. J. Plast 27, 1 (2011).10.1016/j.ijplas.2010.03.002
|
[56] |
J. Marian, W. Cai, and V. V. Bulatov, “Dynamic transitions from smooth to rough to twinning in dislocation motion,” Nat. Mater. 3, 158 (2004).10.1038/nmat1072
|
[57] |
J. N. Florando, N. R. Barton, B. S. El-Dasher, J. M. Mcnaney, and M. Kumar, “Analysis of deformation twinning in tantalum single crystals under shock loading conditions,” J. Appl. Phys. 113, 083522 (2013).10.1063/1.4792227
|
[58] |
Z. Wu, H. Bei, G. M. Pharr, and E. George, “Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,” Acta Mater. 81, 428 (2014).10.1016/j.actamat.2014.08.026
|
[59] |
S. Yao, J. Yu, X. Pei, Y. Cui, H. Zhang, H. Peng, Y. Li, and Q. Wu, “A coupled phase-field and crystal plasticity model for understanding shock-induced phase transition of iron,” Int. J. Plast. 172, 103860 (2023).10.1016/j.ijplas.2023.103860
|
[60] |
K. Yang, Y. Wu, Y. Wu, F. Huang, T. Chong et al., “A unified model of anisotropy, thermoelasticity, inelasticity, phase transition and reaction for high-pressure ramp-loaded RDX single crystal,” Int. J. Plast. 144, 103048 (2021).10.1016/j.ijplas.2021.103048
|