Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
Dong Jinlei, Zhang Xuping, Wang Guiji, Wu Xianqian, Luo Binqiang, Chen Xuemiao, Tan Fuli, Zhao Jianheng, Sun Chengwei. Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression[J]. Matter and Radiation at Extremes, 2024, 9(5): 057802. doi: 10.1063/5.0206773
Citation: Dong Jinlei, Zhang Xuping, Wang Guiji, Wu Xianqian, Luo Binqiang, Chen Xuemiao, Tan Fuli, Zhao Jianheng, Sun Chengwei. Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression[J]. Matter and Radiation at Extremes, 2024, 9(5): 057802. doi: 10.1063/5.0206773

Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression

doi: 10.1063/5.0206773
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: xupingzhang@sina.cn and 1529899503@qq.com
  • Received Date: 2024-03-04
  • Accepted Date: 2024-06-02
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-01
  • It is of substantial scientific significance and practical value to reveal and understand the multiscale mechanical properties and intrinsic mechanisms of medium-entropy alloys (MEAs) under high strain rates and pressures. In this study, the mechanical responses and deformation mechanisms of an equiatomic CoCrNi MEA are investigated utilizing magnetically driven ramp wave compression (RWC) with a strain rate of 105 s−1. The CoCrNi MEA demonstrates excellent dynamic mechanical responses and yield strength under RWC compared with other advanced materials. Multiscale characterizations reveal that grain refinement and abundant micromechanisms, including dislocation slip, stacking faults, nanotwin network, and Lomer–Cottrell locks, collectively contribute to its excellent performance during RWC. Furthermore, dense deformation twins and shear bands intersect, forming a weave-like microstructure that can disperse deformation and enhance plasticity. On the basis of these observations, we develop a modified crystal plasticity model with coupled dislocation and twinning mechanisms, providing a relatively accurate quantitative description of the multiscale behavior under RWC. The results of simulations indicate that the activation of multilevel microstructures in CoCrNi MEA is primarily attributable to stress inhomogeneities and localized strain during RWC. Our research offers valuable insights into the dynamic mechanical responses of CoCrNi MEA, positioning it as a promising material for use under extreme dynamic conditions.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Jinlei Dong: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Writing – original draft (equal); Writing – review & editing (equal). Xuping Zhang: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Methodology (equal); Supervision (equal). Guiji Wang: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Xianqian Wu: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Supervision (equal). Binqiang Luo: Formal analysis (equal); Methodology (equal); Resources (equal). Xuemiao Chen: Formal analysis (equal); Methodology (equal); Resources (equal). Fuli Tan: Supervision (equal). Jianheng Zhao: Supervision (equal). Chengwei Sun: Supervision (equal).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater. 4, 515 (2019).10.1038/s41578-019-0121-4
    [2]
    Y. Tang, R. X. Wang, B. Xiao, Z. R. Zhang, S. Li, J. W. Qiao, S. X. Bai, Y. Zhang, and P. K. Liaw, “A review on the dynamic-mechanical behaviors of high-entropy alloys,” Prog. Mater. Sci. 135, 101090 (2023).10.1016/j.pmatsci.2023.101090
    [3]
    T. W. Zhang, S. G. Ma, D. Zhao, Y. C. Wu, Y. Zhang, Z. H. Wang, and J. W. Qiao, “Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling,” Int. J. Plast. 124, 226 (2020).10.1016/j.ijplas.2019.08.013
    [4]
    Y. Z. Wang, Z. M. Jiao, G. B. Bian, H. J. Yang, H. W. He, Z. H. Wang, P. K. Liaw, and J. W. Qiao, “Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure,” Mater. Sci. Eng.: A 839, 142837 (2022).10.1016/j.msea.2022.142837
    [5]
    K. Wang, X. Jin, Y. Zhang, P. K. Liaw, and J. W. Qiao, “Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures,” Phys. Rev. Mater. 5, 113608 (2021).10.1103/physrevmaterials.5.113608
    [6]
    A. R. Cui, S. C. Hu, S. Zhang, J. C. Cheng, Q. Li, J. Y. Huang, and S. N. Luo, “Spall response of medium-entropy alloy CrCoNi under plate impact,” Int. J. Mech. Sci. 252, 108331 (2023).10.1016/j.ijmecsci.2023.108331
    [7]
    S. Zhao, S. Yin, X. Liang, F. Cao, Q. Yu, R. Zhang, L. Dai, C. J. Ruestes, R. O. Ritchie, and A. M. Minor, “Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading,” Sci. Adv. 9, eadf8602 (2023).10.1126/sciadv.adf8602
    [8]
    K. Shi, J. Cheng, L. Cui, J. Qiao, J. Huang, M. Zhang, H. Yang, and Z. Wang, “Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys,” J. Appl. Phys. 132, 205105 (2022).10.1063/5.0130634
    [9]
    D. E. Fratanduono, M. Millot, D. G. Braun, S. J. Ali, A. Fernandez-Pañella, C. T. Seagle, J. P. Davis, J. L. Brown, Y. Akahama, R. G. Kraus, M. C. Marshall, R. F. Smith, E. F. O’Bannon III, J. M. McNaney, and J. H. Eggert, “Establishing gold and platinum standards to 1 terapascal using shockless compression,” Science 372, 1063 (2021).10.1126/science.abh0364
    [10]
    D. B. Reisman, A. Toor, R. C. Cauble, C. A. Hall, J. R. Asay, M. D. Knudson, and M. D. Furnish, “Magnetically driven isentropic compression experiments on the Z accelerator,” J. Appl. Phys. 89, 1625 (2001).10.1063/1.1337082
    [11]
    K. Chen, B. Chen, Y. Cui, Y. Yu, J. Yu, H. Geng, D. Kang, J. Wu, Y. Shen, and J. Dai, “On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass,” Matter Radiat. Extremes 9, 027802 (2024).10.1063/5.0176138
    [12]
    J. C. Cheng, J. Xu, X. J. Zhao, K. W. Shi, J. Li, Q. Zhang, J. W. Qiao, J. Y. Huang, and S. N. Luo, “Shock compression and spallation of a medium-entropy alloy Fe40Mn20Cr20Ni20,” Mater. Sci. Eng.: A 847, 143311 (2022).10.1016/j.msea.2022.143311
    [13]
    D. Xu, M. Wang, T. Li, X. Wei, and Y. Lu, “A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys,” Microstructures 2, 2022001 (2022).10.20517/microstructures.2021.10
    [14]
    X. Zhang, G. Wang, B. Luo, S. N. Bland, F. Tan, F. Zhao, J. Zhao, C. Sun, and C. Liu, “Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate,” J. Alloys Compd. 731, 569 (2018).10.1016/j.jallcom.2017.10.080
    [15]
    H. K. Mao, B. Chen, J. Chen, K. Li, J. F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59 (2016).10.1016/j.mre.2016.01.005
    [16]
    F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, “Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,” Acta Mater. 58, 1152 (2010).10.1016/j.actamat.2009.10.058
    [17]
    S. Nemat-Nasser and R. Kapoor, “Deformation behavior of tantalum and a tantalum tungsten alloy,” Int. J. Plast. 17, 1351 (2001).10.1016/s0749-6419(00)00088-7
    [18]
    M. Kothari and L. Anand, “Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum,” J. Mech. Phys. Solids 46, 51 (1998).10.1016/s0022-5096(97)00037-9
    [19]
    R. W. Armstrong and S. M. Walley, “High strain rate properties of metals and alloys,” Int. Mater. Rev. 53, 105 (2008).10.1179/174328008x277795
    [20]
    R. W. Armstrong and Q. Z. Li, “Dislocation mechanics of high-rate deformations,” Metall. Mater. Trans. A 46, 4438 (2015).10.1007/s11661-015-2779-6
    [21]
    A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, “Modeling of plasticity and fracture of metals at shock loading,” J. Appl. Phys. 113, 193508 (2013).10.1063/1.4805713
    [22]
    S. Yao, X. Pei, J. Yu, and Q. Wu, “Assessment of the time-dependent behavior of dislocation multiplication under shock loading,” Int. J. Plast. 158, 103434 (2022).10.1016/j.ijplas.2022.103434
    [23]
    S. Yao, J. Yu, Y. Cui, X. Pei, Y. Yu, and Q. Wu, “Revisiting the power law characteristics of the plastic shock front under shock loading,” Phys. Rev. Lett. 126, 085503 (2021).10.1103/physrevlett.126.085503
    [24]
    G. Wang, B. Luo, X. Zhang, J. Zhao, C. Sun, F. Tan, T. Chong, J. Mo, G. Wu, and Y. Tao, “A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading,” Rev. Sci. Instrum. 84, 015117 (2013).10.1063/1.4788935
    [25]
    B. Q. Luo, X. M. Chen, G. J. Wang, F. L. Tan, G. H. Chen et al., “Dynamic strength measurement of aluminum under magnetically driven ramp wave pressure-shear loading,” Int. J. Impact Eng. 100, 56 (2017).10.1016/j.ijimpeng.2016.10.010
    [26]
    X. Pan, B. Luo, X. Zhang, H. Peng, X. Chen, G. Wang, F. Tan, J. Zhao, and C. Sun, “Uncertainty quantification of magnetically driven quasi-isentropic compression experiments based on Monte Carlo method,” Explos. Shock Wave 43, 031101 (2022).10.11883/bzycj-2022-0408
    [27]
    K. V. Khishchenko and A. E. Mayer, “High- and low-entropy layers in solids behind shock and ramp compression waves,” Int. J. Mech. Sci. 189, 105971 (2021).10.1016/j.ijmecsci.2020.105971
    [28]
    Z. J. Jiang, J. Y. He, H. Y. Wang, H. S. Zhang, Z. P. Lu, and L. H. Dai, “Shock compression response of high entropy alloys,” Mater. Res. Lett. 4, 226 (2016).10.1080/21663831.2016.1191554
    [29]
    N. B. Zhang, J. Xu, Z. D. Feng, Y. F. Sun, J. Y. Huang, X. J. Zhao, X. H. Yao, S. Chen, L. Lu, and S. N. Luo, “Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi,” J. Mater. Sci. Technol. 128, 1 (2022).10.1016/j.jmst.2022.02.056
    [30]
    E. N. Hahn and S. J. Fensin, “Influence of defects on the shock Hugoniot of tantalum,” J. Appl. Phys. 125, 215902 (2019).10.1063/1.5096526
    [31]
    J. C. F. Millett, N. K. Bourne, Z. Rosenberg, and J. E. Field, “Shear strength measurements in a tungsten alloy during shock loading,” J. Appl. Phys. 86, 6707 (1999).10.1063/1.371748
    [32]
    B. Pang, S. Case, I. P. Jones, J. C. F. Millett, G. Whiteman et al., “The defect evolution in shock loaded tantalum single crystals,” Acta Mater. 148, 482 (2018).10.1016/j.actamat.2017.11.052
    [33]
    V. F. Nesterenko, M. A. Meyers, J. C. LaSalvia et al., “Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum,” Mater. Sci. Eng.: A 229, 23 (1997).10.1016/s0921-5093(96)10847-9
    [34]
    Y. Yang, S. Yang, and H. Wang, “Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy,” Mater. Sci. Eng. A 802, 140440 (2021).10.1016/j.msea.2020.140440
    [35]
    M. C. Hawkins, S. Thomas, R. S. Hixson, J. Gigax, N. Li, C. Liu, J. A. Valdez, and S. Fensin, “Dynamic properties of FeCrMnNi, a high entropy alloy,” Mater. Sci. Eng.: A 840, 142906 (2022).10.1016/j.msea.2022.142906
    [36]
    L. T. W. Smith, Y. Su, S. Xu, A. Hunter, and I. J. Beyerlein, “The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy,” Int. J. Plast. 134, 102850 (2020).10.1016/j.ijplas.2020.102850
    [37]
    Q. J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nat. Commun. 10, 3563 (2019).10.1038/s41467-019-11464-7
    [38]
    J. Ding, Q. Yu, M. Asta, and R. O. Ritchie, “Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys,” Proc. Natl. Acad. Sci. U. S. A. 115, 8919 (2018).10.1073/pnas.1808660115
    [39]
    W. R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, and I. J. Beyerlein, “Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi,” Acta Mater. 199, 352 (2020).10.1016/j.actamat.2020.08.044
    [40]
    F. X. Zhang, S. J. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J. Y. P. Ko, D. C. Pagan, J. C. Neuefeind, W. J. Weber, and Y. W. Zhang, “Local structure and short-range order in a NiCoCr solid solution alloy,” Phys. Rev. Lett. 118, 205501 (2017).10.1103/physrevlett.118.205501
    [41]
    R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie, and A. M. Minor, “Short-range order and its impact on the CrCoNi medium-entropy alloy,” Nature 581, 283 (2020).10.1038/s41586-020-2275-z
    [42]
    L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang, H. Zhou, F. Yuan, X. Wu, Z. Cheng, and E. Ma, “Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy,” Acta Mater. 224, 117490 (2022).10.1016/j.actamat.2021.117490
    [43]
    Y. Tian and F. Chen, “Short-range order-dependent dislocation mobilities in CrCoNi medium entropy alloy: Atomistic simulations and modeling,” Int. J. Plast. 172, 103859 (2024).10.1016/j.ijplas.2023.103859
    [44]
    G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E. P. George, “Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi,” Acta Mater. 128, 292 (2017).10.1016/j.actamat.2017.02.036
    [45]
    D. Qi, B. Fu, K. Du, T. Yao, C. Cui, J. Zhang, and H. Ye, “Temperature effects on the transition from Lomer-Cottrell locks to deformation twinning in a Ni-Co-based superalloy,” Scr. Mater. 125, 24 (2016).10.1016/j.scriptamat.2016.07.033
    [46]
    Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E. P. George, Q. Yu, S. X. Mao, and R. O. Ritchie, “Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy,” Nat. Commun. 8, 14390 (2017).10.1038/ncomms14390
    [47]
    Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, and X. L. Wu, “Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures,” Acta Mater. 148, 407 (2018).10.1016/j.actamat.2018.02.016
    [48]
    J. Meng, Y. Qiao, Y. Chen, T. W. Liu, T. Li, H. Y. Wang, and L. H. Dai, “A high-entropy alloy syntactic foam with exceptional cryogenic and dynamic properties,” Mater. Sci. Eng.: A 876, 145146 (2023).10.1016/j.msea.2023.145146
    [49]
    X. Li, S. Sun, Y. Zou, Q. Zhu, Y. Tian, and J. Wang, “Twin-coupled shear bands in an ultrafine-grained CoCrFeMnNi high-entropy alloy deformed at 77 K,” Mater. Res. Lett. 10, 385 (2022).10.1080/21663831.2022.2053220
    [50]
    A. L. Greer, Y. Q. Cheng, and E. Ma, “Shear bands in metallic glasses,” Mater. Sci. Eng.: R: Rep. 74, 71 (2013).10.1016/j.mser.2013.04.001
    [51]
    S. De, A. R. Zamiri, and Rahul, “A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX,” J. Mech. Phys. Solids 64, 287 (2014).10.1016/j.jmps.2013.10.012
    [52]
    J. P. Hirth, H. M. Zbib, and J. Lothe, “Forces on high velocity dislocations,” Modell. Simul. Mater. Sci. Eng. 6, 165 (1999).10.1088/0965-0393/6/2/006
    [53]
    R. A. Austin and D. L. McDowell, “Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum,” Int. J. Plast 32–33, 134 (2012).10.1016/j.ijplas.2011.11.002
    [54]
    S. Yao, X. Pei, Z. Liu, J. Yu, Y. Yu, and Q. Wu, “Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model,” Mech. Mater. 140, 103211 (2020).10.1016/j.mechmat.2019.103211
    [55]
    R. A. Austin and D. L. McDowell, “A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates,” Int. J. Plast 27, 1 (2011).10.1016/j.ijplas.2010.03.002
    [56]
    J. Marian, W. Cai, and V. V. Bulatov, “Dynamic transitions from smooth to rough to twinning in dislocation motion,” Nat. Mater. 3, 158 (2004).10.1038/nmat1072
    [57]
    J. N. Florando, N. R. Barton, B. S. El-Dasher, J. M. Mcnaney, and M. Kumar, “Analysis of deformation twinning in tantalum single crystals under shock loading conditions,” J. Appl. Phys. 113, 083522 (2013).10.1063/1.4792227
    [58]
    Z. Wu, H. Bei, G. M. Pharr, and E. George, “Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,” Acta Mater. 81, 428 (2014).10.1016/j.actamat.2014.08.026
    [59]
    S. Yao, J. Yu, X. Pei, Y. Cui, H. Zhang, H. Peng, Y. Li, and Q. Wu, “A coupled phase-field and crystal plasticity model for understanding shock-induced phase transition of iron,” Int. J. Plast. 172, 103860 (2023).10.1016/j.ijplas.2023.103860
    [60]
    K. Yang, Y. Wu, Y. Wu, F. Huang, T. Chong et al., “A unified model of anisotropy, thermoelasticity, inelasticity, phase transition and reaction for high-pressure ramp-loaded RDX single crystal,” Int. J. Plast. 144, 103048 (2021).10.1016/j.ijplas.2021.103048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return