Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
Brun F., Ribotte L., Boutoux G., Davoine X., Masson-Laborde P. E., Sentoku Y., Iwata N., Blanchot N., Batani D., Lantuéjoul I., Lecherbourg L., Rosse B., Rousseaux C., Vauzour B., Raffestin D., D’Humières E., Ribeyre X.. Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility[J]. Matter and Radiation at Extremes, 2024, 9(5): 057203. doi: 10.1063/5.0206416
Citation: Brun F., Ribotte L., Boutoux G., Davoine X., Masson-Laborde P. E., Sentoku Y., Iwata N., Blanchot N., Batani D., Lantuéjoul I., Lecherbourg L., Rosse B., Rousseaux C., Vauzour B., Raffestin D., D’Humières E., Ribeyre X.. Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility[J]. Matter and Radiation at Extremes, 2024, 9(5): 057203. doi: 10.1063/5.0206416

Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility

doi: 10.1063/5.0206416
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: florent.brun.1@u-bordeaux.fr
  • Received Date: 2024-03-01
  • Accepted Date: 2024-07-14
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-01
  • This article reports the first measurements of high-energy photons produced with the high-intensity PETawatt Aquitaine Laser (PETAL) laser. The experiments were performed during the commissioning of the laser. The laser had an energy of about 400 J, an intensity of 8 × 1018 W cm−2, and a pulse duration of 660 fs (FWHM). It was shot at a 2 mm-thick solid tungsten target. The high-energy photons were produced mainly from the bremsstrahlung process for relativistic electrons accelerated inside a plasma generated on the front side of the target. This paper reports measurements of electrons, protons and photons. Hot electrons up to ≈35 MeV with a few-MeV temperature were recorded by a spectrometer, called SESAME (Spectre ÉlectronS Angulaire Moyenne Énergie). K- and L-shells were clearly detected by a photon spectrometer called SPECTIX (Spectromètre Petal à Cristal en TransmIssion pour le rayonnnement X). High-energy photons were diagnosed by CRACC-X (Cassette de RAdiographie Centre Chambre-rayonnement X), a bremsstrahlung cannon. Bremsstrahlung cannon analysis is strongly dependent on the hypothesis adopted for the spectral shape. Different shapes can exhibit similar reproductions of the experimental data. To eliminate dependence on the shape hypothesis and to facilitate analysis of the data, simulations of the interaction were performed. To model the mechanisms involved, a simulation chain including hydrodynamic, particle-in-cell, and Monte Carlo simulations was used. The simulations model the preplasma generated at the front of the target by the PETAL laser prepulse, the acceleration of electrons inside the plasma, the generation of MeV-range photons from these electrons, and the response of the detector impacted by the energetic photon beam. All this work enabled reproduction of the experimental data. The high-energy photons produced have a large emission angle and an exponential distribution shape. In addition to the analysis of the photon spectra, positron production was also investigated. Indeed, if high-energy photons are generated inside the solid target, some positron/electron pairs may be produced by the Bethe–Heitler process. Therefore, the positron production achievable within the PETAL laser facility was quantified. To conclude the study, the possibility of creating electron/positron pairs through the linear Breit–Wheeler process with PETAL was investigated.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    F. Brun: Conceptualization (equal); Formal analysis (lead); Investigation (lead); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (equal). L. Ribotte: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (supporting). G. Boutoux: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (supporting). X. Davoine: Formal analysis (supporting); Resources (supporting); Validation (supporting); Writing – review & editing (supporting). P. E. Masson-Laborde: Formal analysis (supporting); Resources (supporting); Validation (supporting); Writing – review & editing (supporting). Y. Sentoku: Investigation (supporting); Validation (supporting); Writing – review & editing (supporting). N. Iwata: Investigation (supporting); Validation (supporting); Writing – review & editing (supporting). N. Blanchot: Data curation (supporting); Investigation (supporting); Resources (supporting); Writing – review & editing (supporting). D. Batani: Conceptualization (equal); Investigation (supporting); Project administration (equal); Supervision (lead); Writing – review & editing (supporting). I. Lantuéjoul: Data curation (supporting); Investigation (supporting); Resources (equal); Writing – review & editing (supporting). L. Lecherbourg: Conceptualization (equal); Investigation (equal); Project administration (equal); Supervision (equal); Writing – review & editing (supporting). B. Rosse: Investigation (equal); Resources (equal); Writing – review & editing (supporting). C. Rousseaux: Conceptualization (equal); Writing – review & editing (supporting). B. Vauzour: Investigation (equal); Resources (equal); Writing – review & editing (supporting). D. Raffestin: Conceptualization (equal); Formal analysis (equal); Investigation (supporting); Project administration (equal); Writing – review & editing (supporting). E. D’Humières: Conceptualization (equal); Investigation (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). X. Ribeyre: Conceptualization (equal); Investigation (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    B. Paradkar, M. Wei, T. Yabuuchi, R. Stephens, M. Haines, S. Krasheninnikov, and F. Beg, “Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities,” Phys. Rev. E 83, 046401 (2011).10.1103/physreve.83.046401
    [2]
    D. Wu, S. Krasheninnikov, S. Luan, and W. Yu, “Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser–matter interaction at relativistic intensities,” Nucl. Fusion 57, 016007 (2016).10.1088/0029-5515/57/1/016007
    [3]
    S. Krasheninnikov, “On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well,” Phys. Plasmas 21, 104510 (2014).10.1063/1.4898310
    [4]
    B. Paradkar, S. Krasheninnikov, and F. Beg, “Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction,” Phys. Plasmas 19, 060703 (2012).10.1063/1.4731731
    [5]
    A. Compant La Fontaine, C. Courtois, F. Gobet, F. Hannachi, J. Marquès, M. Tarisien, M. Versteegen, and T. Bonnet, “Bremsstrahlung spectrum and photon dose from short-pulse high-intensity laser interaction on various metal targets,” Phys. Plasmas 26, 113109 (2019).10.1063/1.5118361
    [6]
    N. J. Carron, An Introduction to the Passage of Energetic Particles Through Matter (Taylor & Francis, 2006).
    [7]
    M. Hohenberger, S. Kerr, C. Yeamans, D. Rusby, K. Meaney, K. Hahn, R. Heredia, T. Sarginson, B. Blue, A. Mackinnon, and W. W. Hsing, “A combined MeV-neutron and x-ray source for the National Ignition Facility,” Rev. Sci. Instrum. 93, 103510 (2022).10.1063/5.0101816
    [8]
    C. Courtois, R. Edwards, A. Compant La Fontaine, C. Aedy, S. Bazzoli, J. L. Bourgade, J. Gazave, J. M. Lagrange, O. Landoas, L. L. Dain, D. Mastrosimone, N. Pichoff, G. Pien, and C. Stoeckl, “Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography,” Phys. Plasmas 20, 083114 (2013).10.1063/1.4818505
    [9]
    B. A. Remington, D. Arnett, R. Paul, Drake, and H. Takabe, “Modeling astrophysical phenomena in the laboratory with intense lasers,” Science 284, 1488–1493 (1999).10.1126/science.284.5419.1488
    [10]
    G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087 (1934).10.1103/physrev.46.1087
    [11]
    O. Pike, F. Mackenroth, E. Hill, and S. Rose, “A photon-photon collider in a vacuum hohlraum,” Nat. Photonics 8, 434–436 (2014).10.1038/nphoton.2014.95
    [12]
    X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).10.1103/physreve.93.013201
    [13]
    I. Drebot, D. Micieli, E. Milotti, V. Petrillo, E. Tassi, and L. Serafini, “Matter from light-light scattering via Breit-Wheeler events produced by two interacting Compton sources,” Phys. Rev. Accel. Beams 20, 043402 (2017).10.1103/physrevaccelbeams.20.043402
    [14]
    J. Yu, H. Lu, T. Takahashi, R. Hu, Z. Gong, W. Ma, Y. Huang, C. Chen, and X. Yan, “Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses,” Phys. Rev. Lett. 122, 014802 (2019).10.1103/physrevlett.122.014802
    [15]
    T. Wang, X. Ribeyre, Z. Gong, O. Jansen, E. d’Humières, D. Stutman, T. Toncian, and A. Arefiev, “Power scaling for collimated γ-ray beams generated by structured laser-irradiated targets and its application to two-photon pair production,” Phys. Rev. Appl. 13, 054024 (2020).10.1103/physrevapplied.13.054024
    [16]
    A. Golub, S. Villalba-Chávez, H. Ruhl, and C. Müller, “Linear Breit-Wheeler pair production by high-energy bremsstrahlung photons colliding with an intense x-ray laser pulse,” Phys. Rev. D 103, 016009 (2021).10.1103/physrevd.103.016009
    [17]
    H. Chen, F. Fiuza, A. Link, A. Hazi, M. Hill, D. Hoarty, S. James, S. Kerr, D. Meyerhofer, J. Myatt et al., “Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications,” Phys. Rev. Lett. 114, 215001 (2015).10.1103/physrevlett.114.215001
    [18]
    H. Chen, D. Meyerhofer, S. Wilks, R. Cauble, F. Dollar, K. Falk, G. Gregori, A. Hazi, E. Moses, C. Murphy et al., “Towards laboratory produced relativistic electron–positron pair plasmas,” High Energy Density Phys. 7, 225–229 (2011).10.1016/j.hedp.2011.05.006
    [19]
    J. Myatt, J. Delettrez, A. Maximov, D. Meyerhofer, R. Short, C. Stoeckl, and M. Storm, “Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation,” Phys. Rev. E 79, 066409 (2009).10.1103/physreve.79.066409
    [20]
    G. Williams, D. Barnak, G. Fiksel, A. Hazi, S. Kerr, C. Krauland, A. Link, M. J. E. Manuel, S. Nagel, J. Park et al., “Target material dependence of positron generation from high intensity laser-matter interactions,” Phys. Plasmas 23, 123109 (2016).10.1063/1.4971235
    [21]
    J. Warwick, T. Dzelzainis, M. E. Dieckmann, W. Schumaker, D. Doria, L. Romagnani, K. Poder, J. Cole, A. Alejo, M. Yeung et al., “Experimental observation of a current-driven instability in a neutral electron-positron beam,” Phys. Rev. Lett. 119, 185002 (2017).10.1103/physrevlett.119.185002
    [22]
    T. Piran, “The physics of gamma-ray bursts,” Rev. Mod. Phys. 76, 1143 (2005).10.1103/revmodphys.76.1143
    [23]
    O. Salafia, C. Barbieri, S. Ascenzi, and M. Toffano, “Gamma-ray burst jet propagation, development of angular structure, and the luminosity function,” Astron. Astrophys. 636, A105 (2020).10.1051/0004-6361/201936335
    [24]
    N. Blanchot, G. Behar, T. Berthier, B. Busserole, C. Chappuis, C. Damiens-Dupont, P. Garcia, F. Granet, C. Grosset-Grange, J.-P. Goossens et al., “Overview of PETAL, the multi-petawatt project in the LMJ facility,” EPJ Web Conf. 59, 07001 (2013).10.1051/epjconf/20135907001
    [25]
    P. Koester, F. Baffigi, G. Cristoforetti, L. Labate, L. Gizzi, S. Baton, M. Koenig, A. Colaïtis, D. Batani, A. Casner et al., “Bremsstrahlung cannon design for shock ignition relevant regime,” Rev. Sci. Instrum. 92, 013501 (2021).10.1063/5.0022030
    [26]
    A. F. A. Bott, L. Chen, G. Boutoux, T. Caillaud, A. Duval, M. Koenig, B. Khiar, I. Lantuéjoul, L. Le-Deroff, B. Reville, R. Rosch, D. Ryu, C. Spindloe, B. Vauzour, B. Villette, A. A. Schekochihin, D. Q. Lamb, P. Tzeferacos, G. Gregori, and A. Casner, “Inefficient magnetic-field amplification in supersonic laser-plasma turbulence,” Phys. Rev. Lett. 127, 175002 (2021).10.1103/physrevlett.127.175002
    [27]
    S. Bolaños, R. Smets, C. Courtois, N. Blanchot, G. Boutoux, W. Cayzac, S. N. Chen, V. Denis, A. Grisollet, I. Lantuejoul, L. L. Deroff, R. Riquier, B. Vauzour, and J. Fuchs, “Experimental mitigation of fast magnetic reconnection in multiple interacting laser-produced plasmas,” Phys. Rev. Lett. (submitted) (2023); arXiv.2305.05701.
    [28]
    S. Baton, A. Colaïtis, C. Rousseaux, G. Boutoux, S. Brygoo, L. Jacquet, M. Koenig, D. Batani, A. Casner, E. L. Bel, D. Raffestin, A. Tentori, V. Tikhonchuk, J. Trela, C. Reverdin, L. Le-Deroff, W. Theobald, G. Cristoforetti, L. Gizzi, P. Koester, L. Labate, and K. Shigemori, “Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition,” High Energy Density Phys. 36, 100796 (2020).10.1016/j.hedp.2020.100796
    [29]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).10.1016/0030-4018(85)90151-8
    [30]
    E. Hugonnot, G. Deschaseaux, O. Hartmann, and H. Coïc, “Design of PETAL multipetawatt high-energy laser front end based on optical parametric chirped pulse amplification,” Appl. Opt. 46, 8181–8187 (2007).10.1364/ao.46.008181
    [31]
    N. Blanchot, G. Béhar, J. Chapuis, C. Chappuis, S. Chardavoine, J. Charrier, H. Coïc, C. Damiens-Dupont, J. Duthu, P. Garcia, J. P. Goossens, F. Granet, C. Grosset-Grange, P. Guerin, B. Hebrard, L. Hilsz, L. Lamaignere, T. Lacombe, E. Lavastre, T. Longhi, J. Luce, F. Macias, M. Mangeant, E. Mazataud, B. Minou, T. Morgaint, S. Noailles, J. Neauport, P. Patelli, E. Perrot-Minnot, C. Present, B. Remy, C. Rouyer, N. Santacreu, M. Sozet, D. Valla, and F. Laniesse, “115 PW–850 J compressed beam demonstration using the PETAL facility,” Opt. Express 25, 16957–16970 (2017).10.1364/oe.25.016957
    [32]
    D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. Masson-Laborde, X. Davoine, N. Blanchot, J. Dubois, X. Vaisseau, E. d’Humières et al., “Enhanced ion acceleration using the high-energy petawatt PETAL laser,” Matter Radiat. Extremes 6, 056901 (2021).10.1063/5.0046679
    [33]
    D. Raffestin, G. Boutoux, N. Blanchot, D. Batani, E. D’Humières, Q. Moreno, T. Longhi, H. Coïc, F. Granet, J. Rault et al., “Application of harmonics imaging to focal spot measurements of the PETAL laser,” J. Appl. Phys. 126, 245902 (2019).10.1063/1.5129856
    [34]
    C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg, H. Chen, R. R. Freeman, A. Link, A. J. Mackinnon, A. G. MacPhee, P. K. Patel, M. Porkolab, R. B. Stephens, and L. D. Van Woerkom, “A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters,” Rev. Sci. Instrum. 79, 10E305 (2008).10.1063/1.2964231
    [35]
    A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J. Jadaud, J. LeBreton, C. Reverdin, B. Rosse, R. Rosch, N. Blanchot, B. Villette, R. Wrobel, and J. Miquel, “LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics,” High Energy Density Phys. 17, 2–11 (2015), part of the Special Issue: 10th International Conference on High Energy Density Laboratory Astrophysics.10.1016/j.hedp.2014.11.009
    [36]
    C. Reverdin, S. Bastiani, D. Batani, E. Brambrink, G. Boutoux, A. Duval, S. Hulin, K. Jakubowska, M. Koenig, I. Lantuéjoul-Thfoin, L. Lecherbourg, C. Szabo, and B. Vauzour, “SPECTIX, a PETAL+ X-ray spectrometer: Design, calibration and preliminary tests,” J. Instrum. 13, C01005 (2018).10.1088/1748-0221/13/01/c01005
    [37]
    G. Boutoux, D. Batani, F. Burgy, J.-E. Ducret, P. Forestier-Colleoni, S. Hulin, N. Rabhi, A. Duval, L. Lecherbourg, C. Reverdin, K. Jakubowska, C. I. Szabo, S. Bastiani-Ceccotti, F. Consoli, A. Curcio, R. De Angelis, F. Ingenito, J. Baggio, and D. Raffestin, “Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the ‘PETawatt Aquitaine Laser,’” Rev. Sci. Instrum. 87, 043108 (2016).10.1063/1.4944863
    [38]
    N. Rabhi, D. Batani, G. Boutoux, J.-E. Ducret, K. Jakubowska, I. Lantuejoul-Thfoin, C. Nauraye, A. Patriarca, A. Saïd, A. Semsoum, L. Serani, B. Thomas, and B. Vauzour, “Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV,” Rev. Sci. Instrum. 88, 113301 (2017).10.1063/1.5009472
    [39]
    N. Rabhi, K. Bohacek, D. Batani, G. Boutoux, J.-E. Ducret, E. Guillaume, K. Jakubowska, C. Thaury, and I. Thfoin, “Calibration of imaging plates to electrons between 40 and 180 MeV,” Rev. Sci. Instrum. 87, 053306 (2016).10.1063/1.4950860
    [40]
    G. Boutoux, N. Rabhi, D. Batani, A. Binet, J.-E. Ducret, K. Jakubowska, J.-P. Nègre, C. Reverdin, and I. Thfoin, “Study of imaging plate detector sensitivity to 5-18 MeV electrons,” Rev. Sci. Instrum. 86, 113304 (2015).10.1063/1.4936141
    [41]
    P. Palmeri, G. Boutoux, D. Batani, and P. Quinet, “Effects of target heating on experiments using Kα and Kβ diagnostics,” Phys. Rev. E 92, 033108 (2015).10.1103/physreve.92.033108
    [42]
    E. Lefebvre, N. Cochet, S. Fritzler, V. Malka, M. M. Alonard, J.-F. Chemin, S. Darbon, L. Disdier, J. Faure, A. Fedotoff et al., “Electron and photon production from relativistic laser–plasma interactions,” Nucl. Fusion 43, 629 (2003).10.1088/0029-5515/43/7/317
    [43]
    E. Lefebvre, S. Bernard, C. Esnault, P. Gauthier, A. Grisollet, P. Hoch, L. Jacquet, G. Kluth, S. Laffite, S. Liberatore et al., “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2018).10.1088/1741-4326/aacc9c
    [44]
    B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J., Suppl. Ser. 131, 273 (2000).10.1086/317361
    [45]
    S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/s0168-9002(03)01368-8
    [46]
    S. Bochkarev, A. Brantov, V. Bychenkov, D. Torshin, V. Kovalev, G. Baidin, and V. Lykov, “Stochastic electron acceleration in plasma waves driven by a high-power subpicosecond laser pulse,” Plasma Phys. Rep. 40, 202 (2014).10.1134/s1063780x14030027
    [47]
    T. Mandal, V. Arora, B. Rao, A. Moorti, A. Upadhyay, and J. Chakera, “Experimental study of fast electron generation in intense short duration laser solid interaction at grazing incidence,” Phys. Plasmas 26, 043105 (2019).10.1063/1.5058111
    [48]
    D. Raffestin, D. Batani, J. Caron, J. Baggio, G. Boutoux, P. Nicolaï, J.-L. Feugeas, V. Tikhonchuk, and E. d’Humières, “Modelling of high-energy particles and radiation production for multipetawatt laser facilities,” Laser Part. Beams 2021, 3355928.10.1155/2021/3355928
    [49]
    Y. Ping, R. Shepherd, B. Lasinski, M. Tabak, H. Chen, H. Chung, K. Fournier, S. Hansen, A. Kemp, D. Liedahl et al., “Absorption of short laser pulses on solid targets in the ultrarelativistic regime,” Phys. Rev. Lett. 100, 085004 (2008).10.1103/physrevlett.100.085004
    [50]
    M. C. Levy, S. C. Wilks, M. Tabak, S. B. Libby, and M. G. Baring, “Petawatt laser absorption bounded,” Nat. Commun. 5, 4149 (2014).10.1038/ncomms5149
    [51]
    R. Gray, R. Wilson, M. King, S. Williamson, R. Dance, C. Armstrong, C. Brabetz, F. Wagner, B. Zielbauer, V. Bagnoud et al., “Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents,” New J. Phys. 20, 033021 (2018).10.1088/1367-2630/aab089
    [52]
    P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (World Scientific, 2005).
    [53]
    A. G. Mordovanakis, P.-E. Masson-Laborde, J. Easter, K. Popov, B. Hou, G. Mourou, W. Rozmus, M. G. Haines, J. Nees, and K. Krushelnick, “Temperature scaling of hot electrons produced by a tightly focused relativistic-intensity laser at 0.5 kHz repetition rate,” Appl. Phys. Lett. 96, 071109 (2010).10.1063/1.3306730
    [54]
    S. Kerr, D. Rusby, G. Williams, K. Meaney, D. Schlossberg, A. Aghedo, D. Alessi, J. Ayers, S. Azhar, M. Aufderheide et al., “Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser,” Phys. Plasmas 30, 013101 (2023).10.1063/5.0124539
    [55]
    A. Compant La Fontaine, “Photon dose produced by a high-intensity laser on a solid target,” J. Phys. D: Appl. Phys. 47, 325201 (2014).10.1088/0022-3727/47/32/325201
    [56]
    M. J. Berger, J. S. Coursey, and M. A. Zucker, “ESTAR, PSTAR, and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.21),” NIST Standard ReferenceDatabase 124 (1999), http://physics.nist.gov/Star.
    [57]
    E. Denoual, L. Bergé, X. Davoine, and L. Gremillet, “Modeling terahertz emissions from energetic electrons and ions in foil targets irradiated by ultraintense femtosecond laser pulses,” Phys. Rev. E 108, 065211 (2023).10.1103/physreve.108.065211
    [58]
    M. N. Quinn, X. H. Yuan, X. X. Lin, D. C. Carroll, O. Tresca, R. J. Gray, M. Coury, C. Li, Y. T. Li, C. M. Brenner, A. P. L. Robinson, D. Neely, B. Zielbauer, B. Aurand, J. Fils, T. Kuehl, and P. McKenna, “Refluxing of fast electrons in solid targets irradiated by intense, picosecond laser pulses,” Plasma Phys. Controlled Fusion 53, 025007 (2011).10.1088/0741-3335/53/2/025007
    [59]
    [60]
    H. Chen, A. Link, Y. Sentoku, P. Audebert, F. Fiuza, A. Hazi, R. Heeter, M. Hill, L. Hobbs, A. Kemp et al., “The scaling of electron and positron generation in intense laser-solid interactions,” Phys. Plasmas 22, 056705 (2015).10.1063/1.4921147
    [61]
    H. Bethe and W. Heitler, “On the stopping of fast particles and on the creation of positive electrons,” Proc. R. Soc. A 146, 83–112 (1934).10.1098/rspa.1934.0140
    [62]
    J. Di Nicola, S. Yang, C. Boley, J. K. Crane, J. Heebner, T. M. Spinka, P. Arnold, C. Barty, M. Bowers, T. Budge et al., “The commissioning of the advanced radiographic capability laser system: Experimental and modeling results at the main laser output,” Proc. SPIE 9345, 93450I (2015).10.1117/12.2080459
    [63]
    H. R. Reiss, “Absorption of light by light,” J. Math. Phys. 3, 59–67 (1962).10.1063/1.1703787
    [64]
    A. Nikishov and V. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field. I,” Sov. Phys. JETP 19, 529–541 (1964).
    [65]
    A. Di Piazza, “Nonlinear Breit-Wheeler pair production in a tightly focused laser beam,” Phys. Rev. Lett. 117, 213201 (2016).10.1103/physrevlett.117.213201
    [66]
    C. Bamber, S. Boege, T. Koffas, T. Kotseroglou, A. Melissinos, D. Meyerhofer, D. Reis, W. Ragg, C. Bula, K. McDonald et al., “Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses,” Phys. Rev. D 60, 092004 (1999).10.1103/physrevd.60.092004
    [67]
    [68]
    F. Mackenroth and A. Di Piazza, “Nonlinear Compton scattering in ultrashort laser pulses,” Phys. Rev. A 83, 032106 (2011).10.1103/physreva.83.032106
    [69]
    Y. He, I. Yeh, T. Blackburn, and A. Arefiev, “A single-laser scheme for observation of linear Breit-Wheeler electron–positron pair creation,” New J. Phys. 23, 115005 (2021).10.1088/1367-2630/ac3049
    [70]
    O. Jansen, E. d’Humières, X. Ribeyre, S. Jequier, and V. T. Tikhonchuk, “Tree code for collision detection of large numbers of particles applied to the Breit-Wheeler process,” J. Comput. Phys. 355, 582–596 (2018).10.1016/j.jcp.2017.11.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (46) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return