Citation: | Sun Liling, Wu Qi, Cai Shu, Ding Yang, Mao Ho-kwang. A novel method for determining the resistivity of compressed superconducting materials[J]. Matter and Radiation at Extremes, 2024, 9(4): 043001. doi: 10.1063/5.0206375 |
[1] |
C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, “A universal scaling relation in high-temperature superconductors,” Nature 430, 539–541 (2004).10.1038/nature02673
|
[2] |
J. Zaanen, “Why the temperature is high,” Nature 430, 512–513 (2004).10.1038/430512a
|
[3] |
J. Y. Zhao, S. Cai, Y. W. Chen, G. D. Gu, H. T. Yan, J. Guo, J. H. Han, P. Y. Wang, Y. Z. Zhou, Y. C. Li, X. D. Li, Z. A. Ren, Q. Wu, X. J. Zhou, Y. Ding, T. Xiang, H. K. Mao, and L. L. Sun, “Superconducting-transition-temperature dependence of superfluid density and conductivity in pressurized cuprate superconductors,” Chin. Phys. Lett 41, 047401 (2024).
|
[4] |
M. I. Eremets, V. V. Struzhkin, H. K. Mao, and R. J. Hemley, “Superconductivity in boron,” Science 293, 272–274 (2001).10.1126/science.1062286
|
[5] |
K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, and K. Amaya, “Superconductivity in the non-magnetic state of iron under pressure,” Nature 412, 316–318 (2001).10.1038/35085536
|
[6] |
V. V. Struzhkin, M. I. Eremets, W. Gan, H. k. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298, 1213–1215 (2002).10.1126/science.1078535
|
[7] |
H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, “Observation of two distinct superconducting phases in CeCu2Si2,” Science 302, 2104–2107 (2003).10.1126/science.1091648
|
[8] |
T. Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao, and J. D. Thompson, “Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5,” Nature 440, 65–68 (2006).10.1038/nature04571
|
[9] |
J. J. Hamlin, V. G. Tissen, and J. S. Schilling, “Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89 GPa,” Phys. Rev. B 73, 094522 (2006).10.1103/physrevb.73.094522
|
[10] |
S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, “Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure,” Nat. Mater. 8, 630–633 (2009).10.1038/nmat2491
|
[11] |
X. J. Chen, V. V. Struzhkin, Y. Yu, A. F. Goncharov, C. T. Lin, H. K. Mao, and R. J. Hemley, “Enhancement of superconductivity by pressure-driven competition in electronic order,” Nature 466, 950–953 (2010).10.1038/nature09293
|
[12] |
L. L. Sun, X. J. Chen, J. Guo, P. W. Gao, Q. Z. Huang, H. D. Wang, M. H. Fang, X. L. Chen, G. F. Chen, Q. Wu, C. Zhang, D. C. Gu, X. L. Dong, L. Wang, K. Yang, A. G. Li, X. Dai, H. K. Mao, and Z. X. Zhao, “Re-emerging superconductivity at 48 kelvin in iron chalcogenides,” Nature 483, 67–69 (2012).10.1038/nature10813
|
[13] |
J. Guo, H. H. Wang, F. von Rohr, Z. Wang, S. Cai, Y. Z. Zhou, K. Yang, A. G. Li, S. Jiang, Q. Wu, R. J. Cava, and L. L. Sun, “Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa,” Proc. Natl. Acad. Sci. U. S. A. 114, 13144–13147 (2017);10.1073/pnas.1716981114
|
[14] |
L. Z. Deng, Y. P. Zheng, Z. Wu, S. Y. Huyan, H. C. Wu, Y. F. Nie, K. J. Cho, and C. W. Chu, “Higher superconducting transition temperature by breaking the universal pressure relation,” Proc. Natl. Acad. Sci. U. S. A. 116, 2004 (2019).10.1073/pnas.1819512116
|
[15] |
J. Guo, Y. Z. Zhou, C. Huang, S. Cai, Y. S. Sheng, G. D. Gu, C. L. Yang, G. Lin, K. Yang, A. G. Li, Q. Wu, T. Xiang, and L. L. Sun, “Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor,” Nat. Phys. 16, 295–300 (2020).10.1038/s41567-019-0740-0
|
[16] |
S. M. Thomas, F. B. Santos, M. H. Christensen, T. Asaba, F. Ronning, J. D. Thompson, E. D. Bauer, R. M. Fernandes, G. Fabbris, and P. F. S. Rosa, “Evidence for a pressure-induced antiferromagnetic quantum critical point in intermediate-valence UTe2,” Sci. Adv. 6, 8709 (2020).10.1126/sciadv.abc8709
|
[17] |
Y. Z. Zhou, J. Guo, S. Cai, J. Y. Zhao, G. D. Gu, C. T. Lin, H. T. Yan, C. Huang, C. L. Yang, S. J. Long, Y. Gong, Y. C. Li, X. D. Li, Q. Wu, J. P. Hu, X. J. Zhou, T. Xiang, and L. L. Sun, “Quantum phase transition from superconducting to insulating-like state in a pressurized cuprate superconductor,” Nat. Phys. 18, 406–410 (2022).10.1038/s41567-022-01513-2
|
[18] |
M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, “Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908–910 (1987).10.1103/physrevlett.58.908
|
[19] |
H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, “Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs,” Nature 453, 376–378 (2008).10.1038/nature06972
|
[20] |
Q. Wu and L. L. Sun, “Puzzle maker in SmB6: Accompany-type valence fluctuation state,” Rep. Prog. Phys. 80, 112501 (2017).10.1088/1361-6633/aa7e3a
|
[21] |
C. L. Yang, J. Guo, S. Cai, Y. Z. Zhou, V. A. Sidorov, C. Huang, S. J. Long, Y. G. Shi, Q. Y. Chen, S. Y. Tan, Q. Wu, P. Coleman, T. Xiang, and L. L. Sun, “Quasi-uniaxial pressure induced superconductivity in the stoichiometric compound UTe2,” Phys. Rev. B 106, 024503 (2022).10.1103/physrevb.106.024503
|