Citation: | Ge Yufei, Ma Shuailing, You Cun, Hu Kuo, Liu Chuang, Wang Yixuan, Wang Xinglin, Li Xinyang, Li Hongyu, Tao Qiang, Jiang Shuqing, Wang Lu, Tang Hu, Yao Di, He Zhi, Yang Xinyi, Liu Zhaodong, Zhou Qiang, Zhu Pinwen, Zou Bo, Liu Bingbing, Cui Tian. A distinctive HPHT platform with different types of large-volume press subsystems at SECUF[J]. Matter and Radiation at Extremes, 2024, 9(6): 063801. doi: 10.1063/5.0205477 |
[1] |
L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).10.1038/natrevmats.2017.5
|
[2] |
H. T. Hall, “Some high-pressure, high-temperature apparatus design considerations: Equipment for use at 100 000 atmospheres and 3000 °C,” Rev. Sci. Instrum. 29, 267–275 (1958).10.1063/1.1716172
|
[3] |
Y.-C. Shang, F.-R. Shen, X.-Y. Hou, L.-Y. Chen, K. Hu et al., “Pressure generation above 35 GPa in a Walker-type large-volume press,” Chin. Phys. Lett. 37(8), 080701 (2020).10.1088/0256-307x/37/8/080701
|
[4] |
T. Ishii, L. Shi, R. Huang, N. Tsujino, D. Druzhbin et al., “Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils,” Rev. Sci. Instrum. 87(2), 024501 (2016).10.1063/1.4941716
|
[5] |
D. Yamazaki, T. Shinmei, T. Inoue, T. Irifune, A. Nozawa et al., “Generation of pressures to ∼60 GPa in Kawai-type apparatus and stability of MnGeO3 perovskite at high pressure and high temperature,” Am. Mineral. 91(8–9), 1342 (2006).10.2138/am.2006.2175
|
[6] |
Y. Tange, T. Irifune, and K.-I. Funakoshi, “Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils,” High Pressure Res. 28(3), 245 (2008).10.1080/08957950802208936
|
[7] |
R. C. Liebermann, “Multi-anvil, high pressure apparatus: A half-century of development and progress,” High Pressure Res. 31(4), 493 (2011).10.1080/08957959.2011.618698
|
[8] |
D. J. Frost, B. T. Poe, R. G. Trønnes, C. Liebske, A. Duba et al., “A new large-volume multianvil system,” Phys. Earth Planet. Inter. 143–144, 507 (2004).10.1016/j.pepi.2004.03.003
|
[9] |
M. A. Barton and F. D. Stacey, “The Grüneisen parameter at high pressure: A molecular dynamical study,” Phys. Earth Planet. Inter. 39(3), 167 (1985).10.1016/0031-9201(85)90087-1
|
[10] |
J. Woenckhaus, R. Köhling, R. Winter, P. Thiyagarajan, and S. Finet, “High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron x-ray scattering technique,” Rev. Sci. Instrum. 71(10), 3895 (2000).10.1063/1.1290508
|
[11] |
S. M. Hong, L. Y. Chen, X. R. Liu, X. H. Wu, and L. Su, “High pressure jump apparatus for measuring Grűneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate),” Rev. Sci. Instrum. 76(5), 053905 (2005).10.1063/1.1899443
|
[12] |
N. Nishiyama, Y. Wang, T. Sanehira, T. Irifune, and M. L. Rivers, “Development of the Multi-anvil assembly 6–6 for DIA and D-DIA type high-pressure apparatuses,” High Pressure Res. 28(3), 307 (2008).10.1080/08957950802250607
|
[13] |
R. Farla, S. Bhat, S. Sonntag, A. Chanyshev, S. Ma et al., “Extreme conditions research using the large-volume press at the P61B endstation, PETRA III,” J. Synchrotron Radiat. 29(2), 409 (2022).10.1107/s1600577522001047
|
[14] |
C. M. Howard and N. P. Walte, “New cooling system for a three-axis multi-anvil press with 6–6 geometry,” High Pressure Res. 41(2), 119 (2021).10.1080/08957959.2021.1910254
|
[15] |
S. Ma, J. Gasc, and R. Farla, “Acoustic emission detection of micro-cracks under high pressure and high temperature in a deformation large-volume apparatus at the endstation P61B, PETRA III,” Rev. Sci. Instrum. 94(2), 023901 (2023).10.1063/5.0107630
|
[16] |
T. Yu, Y. Wang, M. L. Rivers, and S. R. Sutton, “An upgraded and integrated large-volume high-pressure facility at the GeoSoilEnviroCARS bending magnet beamline of the advanced photon source,” Comptes Rendus. Géosci. 351(2–3), 269 (2019).10.1016/j.crte.2018.09.006
|
[17] |
S. Zhang and S.-I. Karato, “Lattice preferred orientation of olivine aggregates deformed in simple shear,” Nature 375(6534), 774 (1995).10.1038/375774a0
|
[18] |
M. Tasaka, M. E. Zimmerman, and D. L. Kohlstedt, “Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing: 1. Mechanical behavior,” J. Geophys. Res.: Solid Earth 122(10), 7584, https://doi.org/10.1002/2017jb014333 (2017).10.1002/2017jb014333
|
[19] |
Z. Liu, T. Irifune, M. Nishi et al., “Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K,” Phys. Earth. Planet. In. 257, 18–20 (2016).
|
[20] |
Y. Ge, C. You, X. Wang, M. Lian, X. Zhao et al., “Pressure calibration method of 28 GPa for large-volume press,” Chin. J. High Pressure Phys. 38(3), 030201 (2024).10.11858/gywlxb.20230807
|
[21] |
D. Yamazaki, E. Ito, T. Yoshino, N. Tsujino, A. Yoneda et al., “Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite,” Phys. Earth Planet. Inter. 228, 262 (2014).10.1016/j.pepi.2014.01.013
|
[22] |
L. Xie, A. Yoneda, T. Yoshino, D. Yamazaki, N. Tsujino et al., “Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus,” Rev. Sci. Instrum. 88(9), 093904 (2017).10.1063/1.4993959
|
[23] |
Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma et al., “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250 (2014).10.1038/nature13381
|
[24] |
M. Lian, F. Wang, K. Rong, X. Ma, H. Liu et al., “Enhancing the fracture toughness of polycrystalline diamond by adjusting the transgranular fracture and intergranular fracture modes,” Int. J. Refract. Hard Met. 118, 106490 (2024).10.1016/j.ijrmhm.2023.106490
|
[25] |
Y. Shang, Z. Liu, J. Dong, M. Yao, Z. Yang et al., “Ultrahard bulk amorphous carbon from collapsed fullerene,” Nature 599(7886), 599 (2021).10.1038/s41586-021-03882-9
|
[26] |
W. Zhao, J. Cheng, Y. Li, M. Ye, D. Wang et al., “Optimizing the thermoelectric transport properties of fast ionic conductor β-Ag2S under high pressure and high temperature,” Appl. Phys. Lett. 123, 062202 (2023).10.1063/5.0155614
|
[27] |
L. Xie, A. Yoneda, T. Katsura, D. Andrault, Y. Tange et al., “Direct viscosity measurement of peridotite melt to lower-mantle conditions: A further support for a fractional magma-ocean solidification at the top of the lower mantle,” Geophys. Res. Lett. 48(19), e2021GL094507, (2021).10.1029/2021gl094507
|
[28] |
C. Schmidt, M. Steele-MacInnis, A. Watenphul, and M. Wilke, “Calibration of zircon as a Raman spectroscopic pressure sensor to high temperatures and application to water-silicate melt systems,” Am. Mineral. 98(4), 643 (2013).10.2138/am.2013.4143
|
[29] |
H. Cui, R. Zhong, X. Wang, Z. Li, Y. Ling et al., “Reassessment of the zircon Raman spectroscopic pressure sensor and application to pressure determination of fused silica capillary capsule,” Ore Geol. Rev. 122, 103540 (2020).10.1016/j.oregeorev.2020.103540
|
[30] |
S. Feng, D. Pan, and Z. Wang, “Facile synthesis of cubic fluorite nano-Ce1−xZrxO2 via hydrothermal crystallization method,” Adv. Powder Technol. 22(5), 678 (2011).10.1016/j.apt.2011.03.005
|
[31] |
T. Ban, T. Kaiden, and Y. Ohya, “Hydrothermal synthesis of layered perovskite-structured metal oxides and cesium tungstate nanosheets,” Cryst. Growth Des. 19(12), 6903 (2019).10.1021/acs.cgd.9b00515
|
[32] |
G. Xu, Z. Ren, P. Du, W. Weng, G. Shen et al., “Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires,” Adv. Mater. 17(7), 907 (2005).10.1002/adma.200400998
|
[33] |
R. Packiaraj, P. Devendran, S. Asath Bahadur, and N. Nallamuthu, “Structural and electrochemical studies of scheelite type BiVO4 nanoparticles: Synthesis by simple hydrothermal method,” J. Mater. Sci.: Mater. Electron. 29(15), 13265 (2018).10.1007/s10854-018-9450-0
|
[34] |
X.-D. Zhang, Z.-S. Wu, J. Zang, D. Li, and Z.-D. Zhang, “Hydrothermal synthesis and characterization of nanocrystalline Zn–Mn spinel,” J. Phys. Chem. Solids 68(8), 1583 (2007).10.1016/j.jpcs.2007.03.044
|
[35] |
D. R. Modeshia and R. I. Walton, “Solvothermal synthesis of perovskites and pyrochlores: Crystallisation of functional oxides under mild conditions,” Chem. Soc. Rev. 39(11), 4303 (2010).10.1039/b904702f
|
[36] |
T. Gadipelly, A. Dasgupta, C. Ghosh, V. Krupa, D. Sornadurai et al., “Synthesis and structural characterisation of Y2Ti2O7 using microwave hydrothermal route,” J. Alloys Compd. 814, 152273 (2020).10.1016/j.jallcom.2019.152273
|
[37] |
Y. Wang, C. Liu, X. Yong, X. Yang, J. Yu et al., “Pressure engineering toward harvesting the bright deep‐blue‐light emission in Y‐based metal‐organic frameworks,” Adv. Funct. Mater. 33(21), 2300109 (2023).10.1002/adfm.202300109
|
[38] |
Y. Wang, X. Yang, C. Liu, Z. Liu, Q. Fang et al., “Maximized green photoluminescence in Tb‐based metal–organic framework via pressure‐treated engineering,” Angew. Chem. 134(48), e202210836 (2022).10.1002/ange.202210836
|
[39] |
X. Guo, N. Zhu, S. P. Wang, G. Li, F. Q. Bai et al., “Stimuli‐responsive luminescent properties of tetraphenylethene‐based strontium and cobalt metal–organic frameworks,” Angew. Chem., Int. Ed. 59(44), 19716 (2020).10.1002/anie.202010326
|
[40] |
T. Zhang, X. Yong, J. Yu, Y. Wang, M. Wu et al., “Brightening blue photoluminescence in nonemission MOF-2 by pressure treatment engineering,” Adv. Mater. 35(23), 2211729 (2023).10.1002/adma.202211729
|
[41] |
F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo et al., “Subsurface water oceans on icy satellites: Chemical composition and exchange processes,” Space Sci. Rev. 153(1–4), 485 (2010).10.1007/s11214-010-9646-y
|
[42] |
B. Journaux, K. Kalousová, C. Sotin, G. Tobie, S. Vance et al., “Large Ocean worlds with high-pressure ices,” Space Sci. Rev. 216(1), 7 (2020).10.1007/s11214-019-0633-7
|
[43] |
F. Nimmo and R. T. Pappalardo, “Ocean worlds in the outer solar system,” J. Geophys. Res.: Planets 121(8), 1378, https://doi.org/10.1002/2016je005081 (2016).10.1002/2016je005081
|
[44] |
X. Wei, Q. Zhou, F. Li, C. Zhang, F. Sun et al., “Novel high-pressure potassium chloride monohydrate and its implications for water-rich planetary bodies,” J. Geophys. Res.: Planets 128(10), e2022JE007622, https://doi.org/10.1029/2022je007622 (2023).10.1029/2022je007622
|
[45] |
C. Sotin, O. Grasset, and A. Mocquet, “Mass–radius curve for extrasolar Earth-like planets and ocean planets,” Icarus 191(1), 337 (2007).10.1016/j.icarus.2007.04.006
|
[46] |
X. Xiao, Y. Zhang, and F. Wang, “Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond,” Environ. Microbiol. Rep. 13(1), 68 (2021).10.1111/1758-2229.12915
|
[47] |
H. Hussmann, C. Sotin, and J. I. Lunine, in Planets and Moons, edited by G. Schubert (Elsevier, 2007), Vol. 10, pp. 509.
|
[48] |
S. J. Baxter, N. C. Burtch, J. D. Evans, A. D. Ready, A. P. Wilkinson et al., “Recovery of MOF-5 from extreme high-pressure conditions facilitated by a modern pressure transmitting medium,” Chem. Mater. 34(2), 768 (2022).10.1021/acs.chemmater.1c03613
|
[49] |
J. Ōsugi, K. Shimizu, K. Inoue, and K. Yasunami, “A compact cubic anvil high pressure apparatus,” Rev. Phys. Chem. Jpn. 34, 1 (1964), available at http://hdl.handle.net/2433/46842.
|
[50] |
V. Chernenko, V. Kokorin, O. Babii, and I. Zasimchuk, “Phase diagrams in the NiMnGa system under compression,” Intermetallics 6(1), 29 (1998).10.1016/s0966-9795(97)00050-2
|
[51] |
Q. Wei, T. Jiao, K. Ramesh, E. Ma, L. Kecskes et al., “Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression,” Acta Mater. 54(1), 77 (2006).10.1016/j.actamat.2005.08.031
|
[52] |
Á. Révész, E. Schafler, and Z. Kovács, “Structural anisotropy in a Zr57Ti5Cu20Al10Ni8 bulk metallic glass deformed by high pressure torsion at room temperature,” Appl. Phys. Lett. 92(1), 011910 (2008).10.1063/1.2830992
|
[53] |
C. M. Pépin, A. Sollier, A. Marizy, F. Occelli, M. Sander et al., “Kinetics and structural changes in dynamically compressed bismuth,” Phys. Rev. B 100(6), 060101 (2019).10.1103/physrevb.100.060101
|
[54] |
D.-L. Yang, J. Liu, C.-L. Lin, Q.-M. Jing, Y. Zhang et al., “Phase transitions in bismuth under rapid compression,” Chin. Phys. B 28(3), 036201 (2019).10.1088/1674-1056/28/3/036201
|
[55] |
M. G. Gorman, A. L. Coleman, R. Briggs, R. S. McWilliams, D. McGonegle et al., “Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth,” Sci. Rep. 8(1), 16927 (2018).10.1038/s41598-018-35260-3
|
[56] |
C. Shao, H. An, X. Wang, R. Jia, B. Zhao et al., “Deformation-induced linear chain–ring transition and crystallization of living polymer sulfur,” Macromolecules 40, 9475–9481 (2007).10.1021/ma071803a
|
[57] |
B. Holtzman, N. Groebner, M. Zimmerman, S. Ginsberg, and D. Kohlstedt, “Stress‐driven melt segregation in partially molten rocks,” Geochem. Geophys. Geosyst. 4(5), 8607, (2003).10.1029/2001gc000258
|
[58] |
S.-i. Karato, H. Jung, I. Katayama, and P. Skemer, “Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies,” Annu. Rev. Earth Planet. Sci. 36, 59 (2008).10.1146/annurev.earth.36.031207.124120
|
[59] |
I. Katayama and S.-I. Karato, “Low-temperature, high-stress deformation of olivine under water-saturated conditions,” Phys. Earth Planet. Inter. 168(3–4), 125 (2008).10.1016/j.pepi.2008.05.019
|
[60] |
L. Wang, S. Blaha, Z. Pintér, R. Farla, T. Kawazoe et al., “Temperature dependence of [100](010) and [001](010) dislocation mobility in natural olivine,” Earth Planet. Sci. Lett. 441, 81 (2016).10.1016/j.epsl.2016.02.029
|
[61] |
Y. Gao, Y. Ma, Q. An, V. Levitas, Y. Zhang et al., “Shear driven formation of nano-diamonds at sub-gigapascals and 300 K,” Carbon 146, 364 (2019).10.1016/j.carbon.2019.02.012
|
[62] |
C. Ji, V. I. Levitas, H. Zhu, J. Chaudhuri, A. Marathe et al., “Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure,” Proc. Natl. Acad. Sci. U. S. A. 109(47), 19108 (2012).10.1073/pnas.1214976109
|
[63] |
Á. Révész and M. Gajdics, “High-pressure torsion of non-equilibrium hydrogen storage materials: A review,” Energies 14(4), 819 (2021).10.3390/en14040819
|
[64] |
K. Edalati, “Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process,” Mater. Trans. 60(7), 1221 (2019).10.2320/matertrans.mf201914
|
[65] |
Y. Wang, L. Zhu, F. Shi, A. Schubnel, N. Hilairet et al., “A laboratory nanoseismological study on deep-focus earthquake micromechanics,” Sci. Adv. 3(7), e1601896 (2017).10.1126/sciadv.1601896
|
[66] |
A. Schubnel, F. Brunet, N. Hilairet, J. Gasc, Y. Wang et al., “Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory,” Science 341(6152), 1377 (2013).10.1126/science.1240206
|