Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Wegert Leonard, Schreiner Stephan, Rauch Constantin, Albertazzi Bruno, Bleuel Paulina, Fröjdh Eric, Koenig Michel, Ludwig Veronika, Martynenko Artem S., Meyer Pascal, Mozzanica Aldo, Müller Michael, Neumayer Paul, Schneider Markus, Triantafyllidis Angelos, Zielbauer Bernhard, Anton Gisela, Michel Thilo, Funk Stefan. Demonstrating grating-based phase-contrast imaging of laser-driven shock waves[J]. Matter and Radiation at Extremes, 2024, 9(4): 047803. doi: 10.1063/5.0200440
Citation: Wegert Leonard, Schreiner Stephan, Rauch Constantin, Albertazzi Bruno, Bleuel Paulina, Fröjdh Eric, Koenig Michel, Ludwig Veronika, Martynenko Artem S., Meyer Pascal, Mozzanica Aldo, Müller Michael, Neumayer Paul, Schneider Markus, Triantafyllidis Angelos, Zielbauer Bernhard, Anton Gisela, Michel Thilo, Funk Stefan. Demonstrating grating-based phase-contrast imaging of laser-driven shock waves[J]. Matter and Radiation at Extremes, 2024, 9(4): 047803. doi: 10.1063/5.0200440

Demonstrating grating-based phase-contrast imaging of laser-driven shock waves

doi: 10.1063/5.0200440
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: L.Wegert@gsi.de
  • Received Date: 2024-01-26
  • Accepted Date: 2024-05-20
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-01
  • Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves. Employing a two-grating Talbot interferometer, we successfully acquire standard absorption, differential phase-contrast, and dark-field images of the shocked target. Good agreement is demonstrated between experimental data and the results of two-dimensional radiation hydrodynamics simulations of the laser–plasma interaction. The main sources of image noise are identified through a thorough assessment of the interferometer’s performance. The acquired images demonstrate that grating-based phase-contrast imaging is a powerful diagnostic tool for high-energy-density science. In addition, we make a novel attempt at using the dark-field image as a signal modality of Talbot interferometry to identify the microstructure of a foam target.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    L.W. and S.S. contributed equally to this work.
    Author Contributions
    Leonard Wegert: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Project administration (equal); Resources (lead); Software (lead); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (lead). Stephan Schreiner: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Project administration (lead); Resources (lead); Software (equal); Validation (lead); Visualization (lead); Writing – original draft (lead); Writing – review & editing (lead). Constantin Rauch: Conceptualization (lead); Data curation (equal); Formal analysis (supporting); Investigation (equal); Methodology (equal); Project administration (supporting); Resources (equal); Software (lead); Validation (equal); Visualization (supporting); Writing – review & editing (equal). Bruno Albertazzi: Data curation (supporting); Investigation (supporting); Methodology (supporting); Project administration (equal); Resources (supporting); Supervision (supporting); Writing – review & editing (supporting). Paulina Bleuel: Data curation (supporting); Investigation (supporting); Resources (supporting); Writing – review & editing (supporting). Eric Fröjdh: Data curation (supporting); Resources (equal); Software (equal); Supervision (supporting); Writing – review & editing (supporting). Michel Koenig: Data curation (supporting); Investigation (supporting); Methodology (supporting); Project administration (equal); Resources (supporting); Supervision (supporting); Writing – review & editing (supporting). Veronika Ludwig: Conceptualization (supporting); Funding acquisition (supporting); Resources (supporting); Writing – review & editing (supporting). Artem S. Martynenko: Conceptualization (equal); Investigation (equal); Methodology (supporting); Resources (equal); Software (supporting); Visualization (supporting); Writing – review & editing (equal). Pascal Meyer: Conceptualization (supporting); Funding acquisition (supporting); Methodology (supporting); Resources (equal); Supervision (supporting); Writing – review & editing (supporting). Aldo Mozzanica: Data curation (supporting); Resources (equal); Software (equal); Supervision (supporting); Writing – review & editing (supporting). Michael Müller: Data curation (supporting); Investigation (supporting); Resources (supporting); Writing – review & editing (supporting). Paul Neumayer: Conceptualization (equal); Data curation (supporting); Formal analysis (equal); Funding acquisition (lead); Investigation (equal); Methodology (supporting); Resources (equal); Supervision (equal); Validation (supporting); Visualization (supporting); Writing – review & editing (equal). Markus Schneider: Data curation (supporting); Investigation (supporting); Methodology (supporting); Resources (equal); Software (supporting); Writing – review & editing (equal). Angelos Triantafyllidis: Data curation (supporting); Project administration (supporting); Resources (supporting); Supervision (supporting); Writing – review & editing (supporting). Bernhard Zielbauer: Conceptualization (equal); Data curation (supporting); Project administration (equal); Resources (supporting); Writing – review & editing (supporting). Gisela Anton: Conceptualization (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (supporting); Supervision (equal); Writing – review & editing (equal). Thilo Michel: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (supporting); Supervision (equal); Writing – review & editing (equal). Stefan Funk: Conceptualization (equal); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (lead); Supervision (lead); Writing – review & editing (equal).
    The data that support the findings of this study are available within the article and its supplementary material and from the corresponding author upon reasonable request.
  • loading
  • [1]
    B. Kozioziemski, B. Bachmann, A. Do, and R. Tommasini, “X-ray imaging methods for high-energy density physics applications,” Rev. Sci. Instrum. 94, 041102 (2023).10.1063/5.0130689
    [2]
    G. W. Collins, L. B. Da Silva, P. Celliers, D. M. Gold, M. E. Foord, R. J. Wallace, A. Ng, S. V. Weber, K. S. Budil, and R. Cauble, “Measurements of the equation of state of deuterium at the fluid insulator-metal transition,” Science 281, 1178–1181 (1998).10.1126/science.281.5380.1178
    [3]
    T. Döppner, D. C. Swift, A. L. Kritcher, B. Bachmann, G. W. Collins, D. A. Chapman, J. Hawreliak, D. Kraus, J. Nilsen, S. Rothman, L. X. Benedict, E. Dewald, D. E. Fratanduono, J. A. Gaffney, S. H. Glenzer, S. Hamel, O. L. Landen, H. J. Lee, S. LePape, T. Ma, M. J. MacDonald, A. G. MacPhee, D. Milathianaki, M. Millot, P. Neumayer, P. A. Sterne, R. Tommasini, and R. W. Falcone, “Absolute equation-of-state measurement for polystyrene from 25 to 60 Mbar using a spherically converging shock wave,” Phys. Rev. Lett. 121, 025001 (2018).10.1103/physrevlett.121.025001
    [4]
    J. F. Hansen, H. Robey, R. Klein, and A. Miles, “Experiment on the mass stripping of an interstellar cloud following shock passage,” Astrophys. J. 662, 379 (2007).10.1086/514804
    [5]
    G. Rigon, A. Casner, B. Albertazzi, T. Michel, P. Mabey, E. Falize, J. Ballet, L. Van Box Som, S. Pikuz, Y. Sakawa, T. Sano, A. Faenov, T. Pikuz, N. Ozaki, Y. Kuramitsu, M. P. Valdivia, P. Tzeferacos, D. Lamb, and M. Koenig, “Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants,” Phys. Rev. E 100, 021201 (2019).10.1103/physreve.100.021201
    [6]
    B. Albertazzi, P. Mabey, T. Michel, G. Rigon, J. R. Marquès, S. Pikuz, S. Ryazantsev, E. Falize, L. Van Box Som, J. Meinecke, N. Ozaki, G. Gregori, and M. Koenig, “Triggering star formation: Experimental compression of a foam ball induced by Taylor–Sedov blast waves,” Matter Radiat. Extremes 7, 036902 (2022).10.1063/5.0068689
    [7]
    M. J.-E. Manuel, B. Khiar, G. Rigon, B. Albertazzi, S. R. Klein, F. Kroll, F. E. Brack, T. Michel, P. Mabey, S. Pikuz, J. C. Williams, M. Koenig, A. Casner, and C. C. Kuranz, “On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas,” Matter Radiat. Extremes 6, 026904 (2021).10.1063/5.0025374
    [8]
    J. R. Rygg, O. S. Jones, J. E. Field, M. A. Barrios, L. R. Benedetti, G. W. Collins, D. C. Eder, M. J. Edwards, J. L. Kline, J. J. Kroll, O. L. Landen, T. Ma, A. Pak, J. L. Peterson, K. Raman, R. P. J. Town, and D. K. Bradley, “2D x-ray radiography of imploding capsules at the National Ignition Facility,” Phys. Rev. Lett. 112, 195001 (2014).10.1103/physrevlett.112.195001
    [9]
    D. Paganin, Coherent X-Ray Optics (Oxford University Press on Demand, 2006).
    [10]
    D. Stutman and M. Finkenthal, “Talbot-Lau x-ray interferometry for high energy density plasma diagnostic,” Rev. Sci. Instrum. 82, 113508 (2011).10.1063/1.3660808
    [11]
    A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, Y. Ping, D. G. Hicks, M. A. Beckwith, G. W. Collins, A. Higginbotham, J. S. Wark, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hast-ings, and C. G. Schroer, “Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL,” Sci. Rep. 5, 11089 (2015).10.1038/srep11089
    [12]
    D. S. Montgomery, “Invited article: X-ray phase contrast imaging in inertial confinement fusion and high energy density research,” Rev. Sci. Instrum. 94, 021103 (2023).10.1063/5.0127497
    [13]
    J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offermann, “Phase-contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81, 10E520 (2010).10.1063/1.3485109
    [14]
    L. Antonelli, F. Barbato, D. Mancelli, J. Trela, G. Zeraouli, G. Boutoux, P. Neumayer, S. Atzeni, A. Schiavi, L. Volpe, V. Bagnoud, C. Brabetz, B. Zielbauer, P. Bradford, N. Woolsey, B. Borm, and D. Batani, “X-ray phase-contrast imaging for laser-induced shock waves,” Europhys. Lett. 125, 35002 (2019).10.1209/0295-5075/125/35002
    [15]
    F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2, 258–261 (2006).10.1038/nphys265
    [16]
    M. P. Valdivia, D. Stutman, C. Stoeckl, W. Theobald, G. W. Collins, V. Bouffetier, M. Vescovi, C. Mileham, I. A. Begishev, S. R. Klein, R. Melean, S. Muller, J. Zou, F. Veloso, A. Casner, F. N. Beg, and S. P. Regan, “Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic,” Rev. Sci. Instrum. 92, 065110 (2021).10.1063/5.0043655
    [17]
    G. Pérez-Callejo, V. Bouffetier, L. Ceurvorst, T. Goudal, S. R. Klein, D. Svyatskiy, M. Holec, P. Perez-Martin, K. Falk, A. Casner et al., “Phase imaging of irradiated foils at the OMEGA EP facility using phase-stepping X-ray Talbot–Lau deflectometry,” High Power Laser Sci. Eng. 11, e49 (2023).10.1017/hpl.2023.44
    [18]
    T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).10.1364/OPEX.13.006296.
    [19]
    M. Schuster, V. Ludwig, B. Akstaller, M. Seifert, A. Wolf, T. Michel, P. Neumayer, S. Funk, and G. Anton, “A fast alignment method for grating-based X-ray phase-contrast imaging systems,” J. Instrum. 14, P08003 (2019).10.1088/1748-0221/14/08/p08003
    [20]
    B. Akstaller, S. Schreiner, F. Hofmann, P. Meyer, P. Neumayer, M. Schuster, A. Wolf, B. Zielbauer, V. Ludwig, T. Michel, G. Anton, and S. Funk, “Single-shot grating-based phase-contrast imaging of a micrometer sample at a laser-driven x-ray backlighter source,” J. Instrum. 16, P06021 (2021).10.1088/1748-0221/16/06/p06021
    [21]
    S. Schreiner, B. Akstaller, L. Dietrich, P. Meyer, P. Neumayer, M. Schuster, A. Wolf, B. Zielbauer, V. Ludwig, T. Michel, G. Anton, and S. Funk, “Noise reduction for single-shot grating-based phase-contrast imaging at an X-ray backlighter,” J. Imaging 7, 178 (2021).10.3390/jimaging7090178
    [22]
    B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J., Suppl. Ser. 131, 273 (2000).10.1086/317361
    [23]
    S. Schreiner, C. Rauch, B. Akstaller, P. Bleuel, E. Fröjdh, A. S. Martynenko, A. Mozzanica, P. Neumayer, L. Wegert, B. Zielbauer et al., “Electromagnetic pulse protective shielding for digital x-ray detectors,” Rev. Sci. Instrum. 94, 075106 (2023).10.1063/5.0160120
    [24]
    A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).10.1143/jjap.42.l866
    [25]
    M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source,” Appl. Phys. Lett. 90, 224101 (2007).10.1063/1.2743928
    [26]
    A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17, 12540–12545 (2009).10.1364/oe.17.012540
    [27]
    T. Zhou, U. Lundström, T. Thüring, S. Rutishauser, D. H. Larsson, M. Stampanoni, C. David, H. M. Hertz, and A. Burvall, “Comparison of two x-ray phase-contrast imaging methods with a microfocus source,” Opt. Express 21, 30183–30195 (2013).10.1364/oe.21.030183
    [28]
    A. Mozzanica, A. Bergamaschi, M. Brueckner, S. Cartier, R. Dinapoli, D. Greiffenberg, J. Jungmann-Smith, D. Maliakal, D. Mezza, M. Ramilli et al., “Characterization results of the JUNGFRAU full scale readout ASIC,” J. Instrum. 11, C02047 (2016).10.1088/1748-0221/11/02/c02047
    [29]
    F. Consoli, V. T. Tikhonchuk, M. Bardon, P. Bradford, D. C. Carroll, J. Cikhardt, M. Cipriani, R. J. Clarke, T. E. Cowan, C. N. Danson et al., “Laser produced electromagnetic pulses: Generation, detection and mitigation,” High Power Laser Sci. Eng. 8, e22 (2020).10.1017/hpl.2020.13
    [30]
    [31]
    H. F. Talbot, “Facts relating to optical science,” Philos Mag. 9, 401–407 (1836).10.1080/14786443608649032
    [32]
    T. J. Suleski, “Generation of Lohmann images from binary-phase Talbot array illuminators,” Appl. Opt. 36, 4686–4691 (1997).10.1364/ao.36.004686
    [33]
    [34]
    F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).10.1038/nmat2096
    [35]
    M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).10.1364/josa.72.000156
    [36]
    E. E. Bennett, R. Kopace, A. F. Stein, and H. Wen, “A grating-based single-shot x-ray phase contrast and diffraction method for in vivo imaging,” Med. Phys. 37, 6047–6054 (2010).10.1118/1.3501311
    [37]
    M. Seifert, M. Gallersdörfer, V. Ludwig, M. Schuster, F. Horn, G. Pelzer, J. Rieger, T. Michel, and G. Anton, “Improved reconstruction technique for moiré imaging using an X-ray phase-contrast Talbot–Lau interferometer,” J. Imaging 4, 62 (2018).10.3390/jimaging4050062
    [38]
    P. Modregger, B. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express 19, 18324–18338 (2011).10.1364/oe.19.018324
    [39]
    T. Thuering and M. Stampanoni, “Performance and optimization of X-ray grating interferometry,” Philos. Trans. R. Soc., A 372, 20130027 (2014).10.1098/rsta.2013.0027
    [40]
    S. Schreiner, C. Rauch, B. Akstaller, P. Bleuel, E. Fröjdh, V. Ludwig, A. Martynenko, P. Meyer, A. Mozzanica, M. Müller, P. Neumayer, M. Schuster, L. Wegert, B. Zielbauer, A. Wolf, G. Anton, T. Michel, and S. Funk, “Design of a Talbot phase-contrast microscopy imaging system with a digital detector for laser-driven X-ray backlighter sources,” J. Instrum. 19, P05004 (2024).10.1088/1748-0221/19/05/p05004
    [41]
    B. Borm, D. Khaghani, and P. Neumayer, “Properties of laser-driven hard x-ray sources over a wide range of laser intensities,” Phys. Plasmas 26, 023109 (2019).10.1063/1.5081800
    [42]
    V. Bagnoud, B. Aurand, A. Blazevic, S. Borneis, C. Bruske, B. Ecker, U. Eisenbarth, J. Fils, A. Frank, E. Gaul, S. Goette, C. Haefner, T. Hahn, K. Harres, H.-M. Heuck, D. Hochhaus, D. H. H. Hoffmann, D. Javorková, H.-J. Kluge, T. Kuehl, S. Kunzer, M. Kreutz, T. Merz-Mantwill, P. Neumayer, E. Onkels, D. Reemts, O. Rosmej, M. Roth, T. Stoehlker, A. Tauschwitz, B. Zielbauer, D. Zimmer, and K. Witte, “Commissioning and early experiments of the PHELIX facility,” Appl. Phys. B 100, 137–150 (2010).10.1007/s00340-009-3855-7
    [43]
    [44]
    N. H. Magee, J. Abdallah, R. E. H. Clark, J. S. Cohen, L. A. Collins, G. Csanak, C. J. Fontes, A. Gauger, J. J. Keady, D. P. Kilcrease, and A. L. Merts, “Atomic structure calculations and new LOS Alamos astrophysical opacities,” in Astrophysical Applications of Powerful New Databases, edited by S. J. Adelman and W. L. Wiese (Astronomical Society of the Pacific, 1995), Vol. 78, p. 51.
    [45]
    W. L. Kruer, “Intense laser plasma interactions: From Janus to Nova,” Phys. Fluids B 3(8), 2356–2366 (1991).10.1063/1.859604
    [46]
    [47]
    F. Albert, N. Lemos, J. L. Shaw, P. M. King, B. B. Pollock, C. Goyon, W. Schumaker, A. M. Saunders, K. A. Marsh, A. Pak, J. E. Ralph, J. L. Martins, L. D. Amorim, R. W. Falcone, S. H. Glenzer, J. D. Moody, and C. Joshi, “Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems,” Phys. Plasmas 25, 056706 (2018).10.1063/1.5020997
    [48]
    O. N. Rosmej, X. F. Shen, A. Pukhov, L. Antonelli, F. Barbato, M. Gyrdymov, M. M. Günther, S. Zähter, V. S. Popov, N. G. Borisenko, and N. E. Andreev, “Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity,” Matter Radiat. Extremes 6, 048401 (2021).10.1063/5.0042315
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (83) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return