Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
Yang Jing, Wang Xinxin, Xu Liang, Wang Qiannan, Sun Yi, Li Jiangtao, Zhang Lin, Li Yinghua, Yu Yuying, Wang Pei, Wu Qiang, Hu Jianbo. Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction[J]. Matter and Radiation at Extremes, 2024, 9(5): 057803. doi: 10.1063/5.0200242
Citation: Yang Jing, Wang Xinxin, Xu Liang, Wang Qiannan, Sun Yi, Li Jiangtao, Zhang Lin, Li Yinghua, Yu Yuying, Wang Pei, Wu Qiang, Hu Jianbo. Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction[J]. Matter and Radiation at Extremes, 2024, 9(5): 057803. doi: 10.1063/5.0200242

Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction

doi: 10.1063/5.0200242
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: wuqianglsd@163.com and jianbo.hu@caep.cn
  • Received Date: 2024-01-25
  • Accepted Date: 2024-07-03
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-01
  • We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction. Our experimental results demonstrate the feasibility of the method for simultaneously identifying the phase and temperature of fragments through analysis of the diffraction pattern. Surprisingly, we observe a deviation from the widely accepted isentropic release assumption, with the temperature of the fragments being found to be more than 100 K higher than expected, owing to the release of plastic work during dynamic fragmentation. Our findings are further verified through extensive large-scale molecular dynamics simulations, in which strain energies are found to be transferred into thermal energies during the nucleation and growth of voids, leading to an increase in temperature. Our findings thus provide crucial insights into the impact-driven dynamic fragmentation phenomenon and reveal the significant influence of plastic work on material response during shock release.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Jing Yang: Data curation (lead); Formal analysis (lead); Funding acquisition (equal); Investigation (lead); Methodology (lead); Visualization (lead); Writing – original draft (lead). Xinxin Wang: Formal analysis (equal); Investigation (equal); Methodology (equal); Visualization (equal). Liang Xu: Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (supporting); Validation (equal); Visualization (equal). Qiannan Wang: Data curation (equal); Investigation (equal); Methodology (equal). Yi Sun: Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal). Jiangtao Li: Data curation (equal); Investigation (equal); Methodology (equal). Lin Zhang: Formal analysis (equal); Investigation (equal); Methodology (equal). Yinghua Li: Investigation (supporting); Methodology (supporting). Yuying Yu: Project administration (equal); Resources (equal); Validation (equal). Pei Wang: Methodology (equal); Project administration (equal); Resources (equal). Qiang Wu: Conceptualization (equal); Project administration (equal); Resources (equal); Supervision (equal). Jianbo Hu: Conceptualization (lead); Funding acquisition (equal); Methodology (equal); Project administration (lead); Resources (lead); Supervision (lead); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    D. Curran, “Dynamic failure of solids,” Phys. Rep. 147(5–6), 253–388 (1987).10.1016/0370-1573(87)90049-4
    [2]
    T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer Science & Business Media, 2003).
    [3]
    M. A. Meyers, Dynamic Behavior of Materials (John Wiley & Sons, 1994).
    [4]
    L. Soulard, “Molecular dynamics study of the micro-spallation,” Eur. Phys. J. D 50(3), 241–251 (2008).10.1140/epjd/e2008-00212-2
    [5]
    V. A. Ogorodnikov, A. L. Mikhaĭlov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).10.1134/s1063776109090180
    [6]
    A. N. Stroh, “A theory of the fracture of metals,” Adv. Phys. 6(24), 418–465 (1957).10.1080/00018735700101406
    [7]
    V. A. Ogorodnikov, A. G. Ivanov, A. L. Mikhailov, N. I. Kryukov, A. P. Tolochko, and V. A. Golubev, “Particle ejection from the shocked free surface of metals and diagnostic methods for these particles,” Combust. Explos. Shock Waves 34(6), 696–700 (1998).10.1007/bf02672705
    [8]
    Y. L. Bian, H. W. Chai, S. J. Ye, H. L. Xie, X. H. Yao, and Y. Cai, “Compression and spallation properties of polyethylene terephthalate under plate impact loading,” Int. J. Mech. Sci. 211, 106736 (2021).10.1016/j.ijmecsci.2021.106736
    [9]
    T. de Rességuier, S. Hemery, E. Lescoute, P. Villechaise, G. I. Kanel, and S. V. Razorenov, “Spall fracture and twinning in laser shock-loaded single-crystal magnesium,” J. Appl. Phys. 121(16), 165104 (2017).10.1063/1.4982352
    [10]
    A. M. Saunders, C. V. Stan, K. K. Mackay, B. Morgan, J. A. K. Horwitz, S. J. Ali, H. G. Rinderknecht, T. Haxhimali, Y. Ping, F. Najjar, J. Eggert, and H. S. Park, “Experimental observations of laser-driven tin ejecta microjet interactions,” Phys. Rev. Lett. 127(15), 155002 (2021).10.1103/physrevlett.127.155002
    [11]
    S. Qi, H. Bao, and Y. Shen, “Numerical investigation on spall fracture in a metallic material caused by laser shock peening,” Mater. Today Commun. 33, 104343 (2022).10.1016/j.mtcomm.2022.104343
    [12]
    X. X. Wang, A. M. He, T. T. Zhou, and P. Wang, “Spall damage in single crystal tin under shock wave loading: A molecular dynamics simulation,” Mech. Mater. 160, 103991 (2021).10.1016/j.mechmat.2021.103991
    [13]
    T. de Rességuier, L. Signor, A. Dragon, P. Severin, and M. Boustie, “Spallation in laser shock-loaded tin below and just above melting on release,” J. Appl. Phys. 102(7), 073535 (2007).10.1063/1.2795436
    [14]
    G. I. Kanel, “Spall fracture: Methodological aspects, mechanisms and governing factors,” Int. J. Fract. 163(1–2), 173–191 (2010).10.1007/s10704-009-9438-0
    [15]
    E. B. Zaretsky, “Shock response of iron between 143 and 1275 K,” J. Appl. Phys. 106(2), 023510 (2009).10.1063/1.3174442
    [16]
    G. I. Kanel, S. V. Razorenov, A. Bogatch, A. V. Utkin, V. E. Fortov, and D. E. Grady, “Spall fracture properties of aluminum and magnesium at high temperatures,” J. Appl. Phys. 79(11), 8310–8317 (1996).10.1063/1.362542
    [17]
    V. K. Golubev, S. A. Novikov, V. A. Sinitsyn, and Y. S. Sobolev, “Influence of temperature on the critical conditions of spalling fracture of metals,” J. Appl. Mech. Tech. Phys. 21(4), 551–555 (1981).10.1007/bf00916494
    [18]
    G. I. Kanel, S. V. Razorenov, A. Bogatch, A. V. Utkin, and D. E. Grady, “Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature,” Int. J. Impact Eng. 20(6–10), 467–478 (1997).10.1016/s0734-743x(97)87435-0
    [19]
    E. L. Christiansen and J. H. Kerr, “Ballistic limit equations for spacecraft shielding,” Int. J. Impact Eng. 26(1–10), 93–104 (2001).10.1016/s0734-743x(01)00070-7
    [20]
    M. Hassani-Gangaraj, D. Veysset, K. A. Nelson, and C. A. Schuh, “Melt-driven erosion in microparticle impact,” Nat. Commun. 9(1), 005077 (2018).10.1038/s41467-018-07509-y
    [21]
    L. Zhang, Y. H. Li, X. M. Li, X. P. Ye, Z. G. Zhang, J. M. Cheng, and L. C. Cai, “Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting,” AIP Adv. 6(5), 055311 (2016).10.1063/1.4950696
    [22]
    T. de Rességuier, G. Prudhomme, C. Roland, E. Brambrink, D. Loison, B. Jodar, E. Lescoute, and A. Sollier, “Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves,” J. Appl. Phys. 124(6), 065106 (2018).10.1063/1.5040304
    [23]
    D. B. Bober, K. K. Mackay, M. C. Akin, and F. M. Najjar, “Understanding the evolution of liquid and solid microjets from grooved Sn and Cu samples using radiography,” J. Appl. Phys. 130(4), 045901 (2021).10.1063/5.0056245
    [24]
    W. T. Buttler, R. K. Schulze, J. J. Charonko, J. C. Cooley, J. E. Hammerberg, J. D. Schwarzkopf, D. G. Sheppard, J. J. Goett III, M. Grover, B. M. LaLone et al., “Understanding the transport and break up of reactive ejecta,” Physica D 415, 132787 (2021).10.1016/j.physd.2020.132787
    [25]
    L. Signor, E. Lescoute, D. Loison, T. De Rességuier, A. Dragon, and G. Roy, “Experimental study of dynamic fragmentation of shockloaded metals below and above melting,” EPJ Web Conf. 6, 39012 (2010).10.1051/epjconf/20100639012
    [26]
    J. Hu, X. Zhou, C. Dai, H. Tan, and J. Li, “Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements,” J. Appl. Phys. 104(8), 083520 (2008).10.1063/1.3003325
    [27]
    B. Wu, F. Wu, Y. Zhu, P. Wang, A. He, and H. Wu, “Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks,” AIP Adv. 8(4), 045002 (2018).10.1063/1.5021671
    [28]
    D. B. Bober, J. Lind, A. M. Saunders, and M. C. Akin, “X-ray diffraction from shock driven Sn microjets,” J. Appl. Phys. 132(18), 185901 (2022).10.1063/5.0111216
    [29]
    M. T. Beason and B. J. Jensen, “Constraining the release of Sn to the ambient melting point following shock loading using time-resolved x-ray diffraction,” J. Appl. Phys. 132(24), 245107 (2022).10.1063/5.0128101
    [30]
    W. T. Buttler, S. K. Lamoreaux, R. K. Schulze, J. D. Schwarzkopf, J. C. Cooley, M. Grover, J. E. Hammerberg, B. M. La Lone, A. Llobet, R. Manzanares et al., “Ejecta transport, breakup and conversion,” J. Dyn. Behav. Mater. 3(2), 334–345 (2017).10.1007/s40870-017-0114-6
    [31]
    T. M. Hartsfield, J. M. Lang, P. M. Goodwin, L. R. Veeser et al., “The temperatures of ejecta transporting in vacuum and gases,” J. Appl. Phys. 131(19), 195104 (2022).10.1063/5.0087212
    [32]
    F. Buy, C. Voltz, and F. Llorca, “Thermodynamically based equation of state for shock wave studies: Application to the design of experiments on tin,” AIP Conf. Proc. 845, 41–44 (2006).10.1063/1.2263260
    [33]
    Y. Sun, S. Xiang, H. Geng, Y. Gan, F. Wu, Y. Wang, H. Chen, J. Li, J. Gao, J. Yang, and C. Dai, “Automated calibrated modeling method of multiphase equations of states: Applied to tin,” Chin. J. High Pressure Phys. 37(2), 021301 (2022).10.11858/gywlxb.20220709
    [34]
    D. A. Rehn, C. W. Greeff, L. Burakovsky, D. G. Sheppard, and S. D. Crockett, “Multiphase tin equation of state using density functional theory,” Phys. Rev. B 103(18), 184102 (2021).10.1103/physrevb.103.184102
    [35]
    C. Mabire and P. L. Héreil, “Shock induced polymorphic transition and melting of tin,” AIP Conf. Proc. 505(1), 93–96 (2000).
    [36]
    A. Denoeud, J.-A. Hernandez, T. Vinci, A. Benuzzi-Mounaix, S. Brygoo, A. Berlioux, F. Lefevre, A. Sollier, L. Videau, A. Ravasio et al., “X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilities,” Rev. Sci. Instrum. 92, 013902 (2021).10.1063/5.0020261
    [37]
    R. M. Vignes, M. F. Ahmed, J. H. Eggert, A. C. Fisher, D. H. Kalantar, N. D. Masters, C. A. Smith, and R. F. Smith, “TARDIS-C: A target diagnostic for measuring material structure at high pressure,” J. Phys.: Conf. Ser. 717, 012115 (2016).10.1088/1742-6596/717/1/012115
    [38]
    C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).10.1063/1.341867
    [39]
    S. Li, J. Feng, W. Liao, Y. Ding, Y. Wang, and Y. Yu, “Experimental study of ablation parameters of aluminium target by 0.35 μm laser,” Acta Opt. Sin. 18(7), 895–900 (1998).
    [40]
    L. Xu, Z. Wang, J. Chen, S. Chen, W. Yang, Y. Ren, X. Zuo, J. Zeng, Q. Wu, and H. Sheng, “Folded network and structural transition in molten tin,” Nat. Commun. 13(1), 126 (2022).10.1038/s41467-021-27742-2
    [41]
    T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino, “Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: A comparison to liquid Pb,” Phys. Rev. B 67(6), 064201 (2003).10.1103/physrevb.67.064201
    [42]
    J. Hu, X. Zhou, H. Tan, J. Li, and C. Dai, “Successive phase transitions of tin under shock compression,” Appl. Phys. Lett. 92(11), 111905 (2008).10.1063/1.2898891
    [43]
    T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).10.1063/1.2400800
    [44]
    T. de Rességuier, D. Loison, A. Dragon, and E. Lescoute, “Laser driven compression to investigate shock-induced melting of metals,” Metals 4(4), 490–502 (2014).10.3390/met4040490
    [45]
    K. K. Mackay, F. M. Najjar, S. J. Ali, J. H. Eggert, T. Haxhimali, B. E. Morgan, H. S. Park, Y. Ping, H. G. Rinderknecht, C. V. Stan, and A. M. Saunders, “Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves,” J. Appl. Phys. 128(21), 215904 (2020).10.1063/5.0028147
    [46]
    S. Y. Grigoryev, B. V. Lakatosh, M. S. Krivokorytov, V. V. Zhakhovsky, S. A. Dyachkov, D. K. Ilnitsky, K. P. Migdal, N. A. Inogamov, A. Y. Vinokhodov, V. O. Kompanets et al., “Expansion and fragmentation of a liquid-metal droplet by a short laser pulse,” Phys. Rev. Appl. 10(6), 064009 (2018).10.1103/physrevapplied.10.064009
    [47]
    S. V. Razorenov, “Influence of structural factors on the strength properties of aluminum alloys under shock wave loading,” Matter Radiat. Extremes 3(4), 145–158 (2018).10.1016/j.mre.2018.03.004
    [48]
    H. Sui, L. Yu, W. Liu, Y. Liu, Y. Cheng, and H. Duan, “Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review,” Matter Radiat. Extremes 7(1), 018201 (2022).10.1063/5.0064557
    [49]
    G. Righi, C. J. Ruestes, C. V. Stan, S. J. Ali, R. E. Rudd, M. Kawasaki, H.-S. Park, and M. A. Meyers, “Towards the ultimate strength of iron: Spalling through laser shock,” Acta Mater. 215, 117072 (2021).10.1016/j.actamat.2021.117072
    [50]
    N. Amadou and T. de Rességuier, “Phase transformations and plasticity in single-crystal iron from shock compression to spall fracture,” Phys. Rev. B 108(17), 174109 (2023).10.1103/physrevb.108.174109
    [51]
    R. Grover, “Liquid metal equation of state based on scaling,” J. Chem. Phys. 55(7), 3435–3441 (1971).10.1063/1.1676596
    [52]
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 1–19 (1995).10.1006/jcph.1995.1039
    [53]
    F. A. Sapozhnikov, G. V. Ionov, V. V. Dremov, L. Soulard, and O. Durand, “The Embedded Atom Model and large-scale MD simulation of tin under shock loading,” J. Phys.: Conf. Ser. 500(3), 032017 (2014).10.1088/1742-6596/500/3/032017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (57) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return