Citation: | Yang Jing, Wang Xinxin, Xu Liang, Wang Qiannan, Sun Yi, Li Jiangtao, Zhang Lin, Li Yinghua, Yu Yuying, Wang Pei, Wu Qiang, Hu Jianbo. Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction[J]. Matter and Radiation at Extremes, 2024, 9(5): 057803. doi: 10.1063/5.0200242 |
[1] |
D. Curran, “Dynamic failure of solids,” Phys. Rep. 147(5–6), 253–388 (1987).10.1016/0370-1573(87)90049-4
|
[2] |
T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer Science & Business Media, 2003).
|
[3] |
M. A. Meyers, Dynamic Behavior of Materials (John Wiley & Sons, 1994).
|
[4] |
L. Soulard, “Molecular dynamics study of the micro-spallation,” Eur. Phys. J. D 50(3), 241–251 (2008).10.1140/epjd/e2008-00212-2
|
[5] |
V. A. Ogorodnikov, A. L. Mikhaĭlov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Y. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, “Detecting the ejection of particles from the free surface of a shock-loaded sample,” J. Exp. Theor. Phys. 109(3), 530–535 (2009).10.1134/s1063776109090180
|
[6] |
A. N. Stroh, “A theory of the fracture of metals,” Adv. Phys. 6(24), 418–465 (1957).10.1080/00018735700101406
|
[7] |
V. A. Ogorodnikov, A. G. Ivanov, A. L. Mikhailov, N. I. Kryukov, A. P. Tolochko, and V. A. Golubev, “Particle ejection from the shocked free surface of metals and diagnostic methods for these particles,” Combust. Explos. Shock Waves 34(6), 696–700 (1998).10.1007/bf02672705
|
[8] |
Y. L. Bian, H. W. Chai, S. J. Ye, H. L. Xie, X. H. Yao, and Y. Cai, “Compression and spallation properties of polyethylene terephthalate under plate impact loading,” Int. J. Mech. Sci. 211, 106736 (2021).10.1016/j.ijmecsci.2021.106736
|
[9] |
T. de Rességuier, S. Hemery, E. Lescoute, P. Villechaise, G. I. Kanel, and S. V. Razorenov, “Spall fracture and twinning in laser shock-loaded single-crystal magnesium,” J. Appl. Phys. 121(16), 165104 (2017).10.1063/1.4982352
|
[10] |
A. M. Saunders, C. V. Stan, K. K. Mackay, B. Morgan, J. A. K. Horwitz, S. J. Ali, H. G. Rinderknecht, T. Haxhimali, Y. Ping, F. Najjar, J. Eggert, and H. S. Park, “Experimental observations of laser-driven tin ejecta microjet interactions,” Phys. Rev. Lett. 127(15), 155002 (2021).10.1103/physrevlett.127.155002
|
[11] |
S. Qi, H. Bao, and Y. Shen, “Numerical investigation on spall fracture in a metallic material caused by laser shock peening,” Mater. Today Commun. 33, 104343 (2022).10.1016/j.mtcomm.2022.104343
|
[12] |
X. X. Wang, A. M. He, T. T. Zhou, and P. Wang, “Spall damage in single crystal tin under shock wave loading: A molecular dynamics simulation,” Mech. Mater. 160, 103991 (2021).10.1016/j.mechmat.2021.103991
|
[13] |
T. de Rességuier, L. Signor, A. Dragon, P. Severin, and M. Boustie, “Spallation in laser shock-loaded tin below and just above melting on release,” J. Appl. Phys. 102(7), 073535 (2007).10.1063/1.2795436
|
[14] |
G. I. Kanel, “Spall fracture: Methodological aspects, mechanisms and governing factors,” Int. J. Fract. 163(1–2), 173–191 (2010).10.1007/s10704-009-9438-0
|
[15] |
E. B. Zaretsky, “Shock response of iron between 143 and 1275 K,” J. Appl. Phys. 106(2), 023510 (2009).10.1063/1.3174442
|
[16] |
G. I. Kanel, S. V. Razorenov, A. Bogatch, A. V. Utkin, V. E. Fortov, and D. E. Grady, “Spall fracture properties of aluminum and magnesium at high temperatures,” J. Appl. Phys. 79(11), 8310–8317 (1996).10.1063/1.362542
|
[17] |
V. K. Golubev, S. A. Novikov, V. A. Sinitsyn, and Y. S. Sobolev, “Influence of temperature on the critical conditions of spalling fracture of metals,” J. Appl. Mech. Tech. Phys. 21(4), 551–555 (1981).10.1007/bf00916494
|
[18] |
G. I. Kanel, S. V. Razorenov, A. Bogatch, A. V. Utkin, and D. E. Grady, “Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature,” Int. J. Impact Eng. 20(6–10), 467–478 (1997).10.1016/s0734-743x(97)87435-0
|
[19] |
E. L. Christiansen and J. H. Kerr, “Ballistic limit equations for spacecraft shielding,” Int. J. Impact Eng. 26(1–10), 93–104 (2001).10.1016/s0734-743x(01)00070-7
|
[20] |
M. Hassani-Gangaraj, D. Veysset, K. A. Nelson, and C. A. Schuh, “Melt-driven erosion in microparticle impact,” Nat. Commun. 9(1), 005077 (2018).10.1038/s41467-018-07509-y
|
[21] |
L. Zhang, Y. H. Li, X. M. Li, X. P. Ye, Z. G. Zhang, J. M. Cheng, and L. C. Cai, “Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting,” AIP Adv. 6(5), 055311 (2016).10.1063/1.4950696
|
[22] |
T. de Rességuier, G. Prudhomme, C. Roland, E. Brambrink, D. Loison, B. Jodar, E. Lescoute, and A. Sollier, “Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves,” J. Appl. Phys. 124(6), 065106 (2018).10.1063/1.5040304
|
[23] |
D. B. Bober, K. K. Mackay, M. C. Akin, and F. M. Najjar, “Understanding the evolution of liquid and solid microjets from grooved Sn and Cu samples using radiography,” J. Appl. Phys. 130(4), 045901 (2021).10.1063/5.0056245
|
[24] |
W. T. Buttler, R. K. Schulze, J. J. Charonko, J. C. Cooley, J. E. Hammerberg, J. D. Schwarzkopf, D. G. Sheppard, J. J. Goett III, M. Grover, B. M. LaLone et al., “Understanding the transport and break up of reactive ejecta,” Physica D 415, 132787 (2021).10.1016/j.physd.2020.132787
|
[25] |
L. Signor, E. Lescoute, D. Loison, T. De Rességuier, A. Dragon, and G. Roy, “Experimental study of dynamic fragmentation of shockloaded metals below and above melting,” EPJ Web Conf. 6, 39012 (2010).10.1051/epjconf/20100639012
|
[26] |
J. Hu, X. Zhou, C. Dai, H. Tan, and J. Li, “Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements,” J. Appl. Phys. 104(8), 083520 (2008).10.1063/1.3003325
|
[27] |
B. Wu, F. Wu, Y. Zhu, P. Wang, A. He, and H. Wu, “Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks,” AIP Adv. 8(4), 045002 (2018).10.1063/1.5021671
|
[28] |
D. B. Bober, J. Lind, A. M. Saunders, and M. C. Akin, “X-ray diffraction from shock driven Sn microjets,” J. Appl. Phys. 132(18), 185901 (2022).10.1063/5.0111216
|
[29] |
M. T. Beason and B. J. Jensen, “Constraining the release of Sn to the ambient melting point following shock loading using time-resolved x-ray diffraction,” J. Appl. Phys. 132(24), 245107 (2022).10.1063/5.0128101
|
[30] |
W. T. Buttler, S. K. Lamoreaux, R. K. Schulze, J. D. Schwarzkopf, J. C. Cooley, M. Grover, J. E. Hammerberg, B. M. La Lone, A. Llobet, R. Manzanares et al., “Ejecta transport, breakup and conversion,” J. Dyn. Behav. Mater. 3(2), 334–345 (2017).10.1007/s40870-017-0114-6
|
[31] |
T. M. Hartsfield, J. M. Lang, P. M. Goodwin, L. R. Veeser et al., “The temperatures of ejecta transporting in vacuum and gases,” J. Appl. Phys. 131(19), 195104 (2022).10.1063/5.0087212
|
[32] |
F. Buy, C. Voltz, and F. Llorca, “Thermodynamically based equation of state for shock wave studies: Application to the design of experiments on tin,” AIP Conf. Proc. 845, 41–44 (2006).10.1063/1.2263260
|
[33] |
Y. Sun, S. Xiang, H. Geng, Y. Gan, F. Wu, Y. Wang, H. Chen, J. Li, J. Gao, J. Yang, and C. Dai, “Automated calibrated modeling method of multiphase equations of states: Applied to tin,” Chin. J. High Pressure Phys. 37(2), 021301 (2022).10.11858/gywlxb.20220709
|
[34] |
D. A. Rehn, C. W. Greeff, L. Burakovsky, D. G. Sheppard, and S. D. Crockett, “Multiphase tin equation of state using density functional theory,” Phys. Rev. B 103(18), 184102 (2021).10.1103/physrevb.103.184102
|
[35] |
C. Mabire and P. L. Héreil, “Shock induced polymorphic transition and melting of tin,” AIP Conf. Proc. 505(1), 93–96 (2000).
|
[36] |
A. Denoeud, J.-A. Hernandez, T. Vinci, A. Benuzzi-Mounaix, S. Brygoo, A. Berlioux, F. Lefevre, A. Sollier, L. Videau, A. Ravasio et al., “X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilities,” Rev. Sci. Instrum. 92, 013902 (2021).10.1063/5.0020261
|
[37] |
R. M. Vignes, M. F. Ahmed, J. H. Eggert, A. C. Fisher, D. H. Kalantar, N. D. Masters, C. A. Smith, and R. F. Smith, “TARDIS-C: A target diagnostic for measuring material structure at high pressure,” J. Phys.: Conf. Ser. 717, 012115 (2016).10.1088/1742-6596/717/1/012115
|
[38] |
C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).10.1063/1.341867
|
[39] |
S. Li, J. Feng, W. Liao, Y. Ding, Y. Wang, and Y. Yu, “Experimental study of ablation parameters of aluminium target by 0.35 μm laser,” Acta Opt. Sin. 18(7), 895–900 (1998).
|
[40] |
L. Xu, Z. Wang, J. Chen, S. Chen, W. Yang, Y. Ren, X. Zuo, J. Zeng, Q. Wu, and H. Sheng, “Folded network and structural transition in molten tin,” Nat. Commun. 13(1), 126 (2022).10.1038/s41467-021-27742-2
|
[41] |
T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino, “Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: A comparison to liquid Pb,” Phys. Rev. B 67(6), 064201 (2003).10.1103/physrevb.67.064201
|
[42] |
J. Hu, X. Zhou, H. Tan, J. Li, and C. Dai, “Successive phase transitions of tin under shock compression,” Appl. Phys. Lett. 92(11), 111905 (2008).10.1063/1.2898891
|
[43] |
T. de Rességuier, L. Signor, A. Dragon, M. Boustie, G. Roy, and F. Llorca, “Experimental investigation of liquid spall in laser shock-loaded tin,” J. Appl. Phys. 101(1), 013506 (2007).10.1063/1.2400800
|
[44] |
T. de Rességuier, D. Loison, A. Dragon, and E. Lescoute, “Laser driven compression to investigate shock-induced melting of metals,” Metals 4(4), 490–502 (2014).10.3390/met4040490
|
[45] |
K. K. Mackay, F. M. Najjar, S. J. Ali, J. H. Eggert, T. Haxhimali, B. E. Morgan, H. S. Park, Y. Ping, H. G. Rinderknecht, C. V. Stan, and A. M. Saunders, “Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves,” J. Appl. Phys. 128(21), 215904 (2020).10.1063/5.0028147
|
[46] |
S. Y. Grigoryev, B. V. Lakatosh, M. S. Krivokorytov, V. V. Zhakhovsky, S. A. Dyachkov, D. K. Ilnitsky, K. P. Migdal, N. A. Inogamov, A. Y. Vinokhodov, V. O. Kompanets et al., “Expansion and fragmentation of a liquid-metal droplet by a short laser pulse,” Phys. Rev. Appl. 10(6), 064009 (2018).10.1103/physrevapplied.10.064009
|
[47] |
S. V. Razorenov, “Influence of structural factors on the strength properties of aluminum alloys under shock wave loading,” Matter Radiat. Extremes 3(4), 145–158 (2018).10.1016/j.mre.2018.03.004
|
[48] |
H. Sui, L. Yu, W. Liu, Y. Liu, Y. Cheng, and H. Duan, “Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review,” Matter Radiat. Extremes 7(1), 018201 (2022).10.1063/5.0064557
|
[49] |
G. Righi, C. J. Ruestes, C. V. Stan, S. J. Ali, R. E. Rudd, M. Kawasaki, H.-S. Park, and M. A. Meyers, “Towards the ultimate strength of iron: Spalling through laser shock,” Acta Mater. 215, 117072 (2021).10.1016/j.actamat.2021.117072
|
[50] |
N. Amadou and T. de Rességuier, “Phase transformations and plasticity in single-crystal iron from shock compression to spall fracture,” Phys. Rev. B 108(17), 174109 (2023).10.1103/physrevb.108.174109
|
[51] |
R. Grover, “Liquid metal equation of state based on scaling,” J. Chem. Phys. 55(7), 3435–3441 (1971).10.1063/1.1676596
|
[52] |
S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 1–19 (1995).10.1006/jcph.1995.1039
|
[53] |
F. A. Sapozhnikov, G. V. Ionov, V. V. Dremov, L. Soulard, and O. Durand, “The Embedded Atom Model and large-scale MD simulation of tin under shock loading,” J. Phys.: Conf. Ser. 500(3), 032017 (2014).10.1088/1742-6596/500/3/032017
|