Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Rodrigues M. R. D., Bonasera A., Scisciò M., Pérez-Hernández J. A., Ehret M., Filippi F., Andreoli P. L., Huault M., Larreur H., Singappuli D., Molloy D., Raffestin D., Alonzo M., Rapisarda G. G., Lattuada D., Guardo G. L., Verona C., Consoli Fe., Petringa G., McNamee A., La Cognata M., Palmerini S., Carriere T., Cipriani M., Di Giorgio G., Cristofari G., De Angelis R., Cirrone G. A. P., Margarone D., Giuffrida L., Batani D., Nicolai P., Batani K., Lera R., Volpe L., Giulietti D., Agarwal S., Krupka M., Singh S., Consoli Fa.. Radioisotope production using lasers: From basic science to applications[J]. Matter and Radiation at Extremes, 2024, 9(3): 037203. doi: 10.1063/5.0196909
Citation: Rodrigues M. R. D., Bonasera A., Scisciò M., Pérez-Hernández J. A., Ehret M., Filippi F., Andreoli P. L., Huault M., Larreur H., Singappuli D., Molloy D., Raffestin D., Alonzo M., Rapisarda G. G., Lattuada D., Guardo G. L., Verona C., Consoli Fe., Petringa G., McNamee A., La Cognata M., Palmerini S., Carriere T., Cipriani M., Di Giorgio G., Cristofari G., De Angelis R., Cirrone G. A. P., Margarone D., Giuffrida L., Batani D., Nicolai P., Batani K., Lera R., Volpe L., Giulietti D., Agarwal S., Krupka M., Singh S., Consoli Fa.. Radioisotope production using lasers: From basic science to applications[J]. Matter and Radiation at Extremes, 2024, 9(3): 037203. doi: 10.1063/5.0196909

Radioisotope production using lasers: From basic science to applications

doi: 10.1063/5.0196909
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: abonasera@comp.tamu.edu and fabrizio.consoli@enea.it; a)Authors to whom correspondence should be addressed: abonasera@comp.tamu.edu and fabrizio.consoli@enea.it
  • Received Date: 2024-01-10
  • Accepted Date: 2024-02-23
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • The discovery of chirped pulse amplification has led to great improvements in laser technology, enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers. Protons with energies of tens of MeV can be accelerated using, for instance, target normal sheath acceleration and focused on secondary targets. Under such conditions, nuclear reactions can occur, with the production of radioisotopes suitable for medical application. The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators. In this paper, we study the production of 67Cu, 63Zn, 18F, and 11C, which are currently used in positron emission tomography and other applications. At the same time, we study the reactions 10B(p,α)7Be and 70Zn(p,4n)67Ga to put further constraints on the proton distributions at different angles, as well as the reaction 11B(p,α)8Be relevant for energy production. The experiment was performed at the 1 PW laser facility at Vega III in Salamanca, Spain. Angular distributions of radioisotopes in the forward (with respect to the laser direction) and backward directions were measured using a high purity germanium detector. Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera [Nucl. Instrum. Methods Phys. Res., Sect. A 637 , 164–170 (2011)].
  • loading
  • [1]
    I. Spencer et al., “Laser generation of proton beams for the production of short-lived positron emitting radioisotopes,” Nucl. Instrum. Methods Phys. Res., Sect. B 183, 449 (2001).10.1016/s0168-583x(01)00771-6
    [2]
    K. W. D. Ledingham et al., “High power laser production of short-lived isotopes for positron emission tomography,” J. Phys. D: Appl. Phys. 37, 2341 (2004).10.1088/0022-3727/37/16/019
    [3]
    E. Amato et al., “Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET,” J. Instrum. 11, C04007 (2016).10.1088/1748-0221/11/04/C04007
    [4]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751
    [5]
    S. Kimura and A. Bonasera, “Deuteron-induced reactions generated by intense lasers for PET isotope production,” Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011).10.1016/j.nima.2011.02.043
    [6]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8
    [7]
    A. X. Li et al., “Acceleration of 60 MeV proton beams in the commissioning experiment of the SULF-10 PW laser,” High Power Laser Sci. Eng. 10, e26 (2022).10.1017/hpl.2022.17
    [8]
    [9]
    [10]
    D. S. Hey et al., “Laser-accelerated proton conversion efficiency thickness scaling,” Phys. Plasmas 16, 123108 (2009).10.1063/1.3270079
    [11]
    S. Kimura and A. Bonasera, “Hydrodynamic scaling analysis of nuclear fusion driven by ultra-intense laser-plasma interactions,” Int. J. Mod. Phys. E 21(12), 1250102 (2012).10.1142/s0218301312501029
    [12]
    [13]
    [14]
    D. Lattuada et al., “Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas,” Phys. Rev. C 93, 045808 (2016).10.1103/physrevc.93.045808
    [15]
    C. Angulo et al., “A compilation of charged-particle induced thermonuclear reaction rates,” Nucl. Phys. A 656, 3 (1999).10.1016/s0375-9474(99)00030-5
    [16]
    S. Kimura et al., “Comment on ‘Observation of neutronless fusion reactions in picosecond laser plasmas,’” Phys. Rev. E 79, 038401 (2009).10.1103/physreve.79.038401
    [17]
    A. Bonasera et al., “Measuring the astrophysical S-factor in plasmas,” in 4th International Conference on Fission Properties of Neutron Rich Nuclei (World Scientific, Sanibel Island, 2007), p. 541.
    [18]
    M. Huang, H. J. Quevedo, G. Zhang, and A. Bonasera, “Nuclear astrophysics with lasers,” Nucl. Phys. News 29(3), 9–13 (2019).10.1080/10619127.2019.1603555
    [19]
    D. Giulietti et al., Nucl. Instrum. Methods Phys. Res., Sect. B 402, 373 (2017).10.1016/j.nimb.2017.03.076
    [20]
    M. S. Schollmeier, “Investigation of proton beam-driven fusion reactions generated by an ultra-short petawatt-scale laser pulse,” Laser Part. Beams 2022, 2404263.10.1155/2022/2404263
    [21]
    G. A. Souliotis et al., “A novel approach to medical radioisotope production using inverse kinematics: A successful production test of the theranostic radionuclide 67Cu,” Appl. Radiat. Isot. 149, 89–95 (2019).10.1016/j.apradiso.2019.04.019
    [22]
    M. R. Dias Rodrigues et al., “Production of 99Mo in inverse kinematics heavy ion reactions,” Radiat. Phys. Chem. 212, 111162 (2023).10.1016/j.radphyschem.2023.111162
    [23]
    M. R. Dias Rodrigues et al., “A novel approach to medical radioisotope production using inverse kinematics,” EPJ Web Conf. 252, 08002 (2021).10.1051/epjconf/202125208002
    [24]
    J. Mabiala et al., “Enhanced production of 99Mo in inverse kinematics heavy ion reactions,” EPJ Web Conf. 252, 08003 (2021).10.1051/epjconf/202125208003
    [25]
    G. Pupillo et al., “Production of 67Cu by enriched 70Zn targets: First measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV,” Radiochim. Acta 108(8), 593–602 (2020).10.1515/ract-2019-3199
    [26]
    C. Labaune, C. Baccou, V. Yahia, C. Neuville, and J. Rafelski, “Laser-initiated primary and secondary nuclear reactions in boron-nitride,” Sci. Rep. 6(1), 21202 (2016).10.1038/srep21202
    [27]
    G. Zhang et al., “Nuclear probes of an out-of-equilibrium plasma at the highest compression,” Phys. Lett. A 383, 2285 (2019).10.1016/j.physleta.2019.04.048
    [28]
    C. Perego, D. Batani, A. Zani, and M. Passoni, “Target normal sheath acceleration analytical modeling, comparative study and developments,” Rev. Sci. Instrum. 83, 02B502 (2012).10.1063/1.3666188
    [29]
    M. Passoni, C. Perego, A. Sgattoni, and D. Batani, “Advances in target normal sheath acceleration theory,” Phys. Plasmas 20, 060701 (2013).10.1063/1.4812708
    [30]
    D. Batani, G. Boutoux, F. Burgy, K. Jakubowska, and J. E. Ducret, “Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime,” Phys. Plasmas 25, 054506 (2018).10.1063/1.5029854
    [31]
    V. Malka, J. Faure, S. Fritzler, M. Manclossi, A. Guemnie-Tafo, E. d’Humières, E. Lefebvre, and D. Batani, “Production of energetic proton beams with lasers,” Rev. Sci. Instrum. 67, 03B302 (2006).10.1063/1.2170031
    [32]
    [33]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (51) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return