Citation: | Rodrigues M. R. D., Bonasera A., Scisciò M., Pérez-Hernández J. A., Ehret M., Filippi F., Andreoli P. L., Huault M., Larreur H., Singappuli D., Molloy D., Raffestin D., Alonzo M., Rapisarda G. G., Lattuada D., Guardo G. L., Verona C., Consoli Fe., Petringa G., McNamee A., La Cognata M., Palmerini S., Carriere T., Cipriani M., Di Giorgio G., Cristofari G., De Angelis R., Cirrone G. A. P., Margarone D., Giuffrida L., Batani D., Nicolai P., Batani K., Lera R., Volpe L., Giulietti D., Agarwal S., Krupka M., Singh S., Consoli Fa.. Radioisotope production using lasers: From basic science to applications[J]. Matter and Radiation at Extremes, 2024, 9(3): 037203. doi: 10.1063/5.0196909 |
[1] |
I. Spencer et al., “Laser generation of proton beams for the production of short-lived positron emitting radioisotopes,” Nucl. Instrum. Methods Phys. Res., Sect. B 183, 449 (2001).10.1016/s0168-583x(01)00771-6
|
[2] |
K. W. D. Ledingham et al., “High power laser production of short-lived isotopes for positron emission tomography,” J. Phys. D: Appl. Phys. 37, 2341 (2004).10.1088/0022-3727/37/16/019
|
[3] |
E. Amato et al., “Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET,” J. Instrum. 11, C04007 (2016).10.1088/1748-0221/11/04/C04007
|
[4] |
A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751
|
[5] |
S. Kimura and A. Bonasera, “Deuteron-induced reactions generated by intense lasers for PET isotope production,” Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011).10.1016/j.nima.2011.02.043
|
[6] |
D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8
|
[7] |
A. X. Li et al., “Acceleration of 60 MeV proton beams in the commissioning experiment of the SULF-10 PW laser,” High Power Laser Sci. Eng. 10, e26 (2022).10.1017/hpl.2022.17
|
[8] | |
[9] | |
[10] |
D. S. Hey et al., “Laser-accelerated proton conversion efficiency thickness scaling,” Phys. Plasmas 16, 123108 (2009).10.1063/1.3270079
|
[11] |
S. Kimura and A. Bonasera, “Hydrodynamic scaling analysis of nuclear fusion driven by ultra-intense laser-plasma interactions,” Int. J. Mod. Phys. E 21(12), 1250102 (2012).10.1142/s0218301312501029
|
[12] | |
[13] | |
[14] |
D. Lattuada et al., “Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas,” Phys. Rev. C 93, 045808 (2016).10.1103/physrevc.93.045808
|
[15] |
C. Angulo et al., “A compilation of charged-particle induced thermonuclear reaction rates,” Nucl. Phys. A 656, 3 (1999).10.1016/s0375-9474(99)00030-5
|
[16] |
S. Kimura et al., “Comment on ‘Observation of neutronless fusion reactions in picosecond laser plasmas,’” Phys. Rev. E 79, 038401 (2009).10.1103/physreve.79.038401
|
[17] |
A. Bonasera et al., “Measuring the astrophysical S-factor in plasmas,” in 4th International Conference on Fission Properties of Neutron Rich Nuclei (World Scientific, Sanibel Island, 2007), p. 541.
|
[18] |
M. Huang, H. J. Quevedo, G. Zhang, and A. Bonasera, “Nuclear astrophysics with lasers,” Nucl. Phys. News 29(3), 9–13 (2019).10.1080/10619127.2019.1603555
|
[19] |
D. Giulietti et al., Nucl. Instrum. Methods Phys. Res., Sect. B 402, 373 (2017).10.1016/j.nimb.2017.03.076
|
[20] |
M. S. Schollmeier, “Investigation of proton beam-driven fusion reactions generated by an ultra-short petawatt-scale laser pulse,” Laser Part. Beams 2022, 2404263.10.1155/2022/2404263
|
[21] |
G. A. Souliotis et al., “A novel approach to medical radioisotope production using inverse kinematics: A successful production test of the theranostic radionuclide 67Cu,” Appl. Radiat. Isot. 149, 89–95 (2019).10.1016/j.apradiso.2019.04.019
|
[22] |
M. R. Dias Rodrigues et al., “Production of 99Mo in inverse kinematics heavy ion reactions,” Radiat. Phys. Chem. 212, 111162 (2023).10.1016/j.radphyschem.2023.111162
|
[23] |
M. R. Dias Rodrigues et al., “A novel approach to medical radioisotope production using inverse kinematics,” EPJ Web Conf. 252, 08002 (2021).10.1051/epjconf/202125208002
|
[24] |
J. Mabiala et al., “Enhanced production of 99Mo in inverse kinematics heavy ion reactions,” EPJ Web Conf. 252, 08003 (2021).10.1051/epjconf/202125208003
|
[25] |
G. Pupillo et al., “Production of 67Cu by enriched 70Zn targets: First measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV,” Radiochim. Acta 108(8), 593–602 (2020).10.1515/ract-2019-3199
|
[26] |
C. Labaune, C. Baccou, V. Yahia, C. Neuville, and J. Rafelski, “Laser-initiated primary and secondary nuclear reactions in boron-nitride,” Sci. Rep. 6(1), 21202 (2016).10.1038/srep21202
|
[27] |
G. Zhang et al., “Nuclear probes of an out-of-equilibrium plasma at the highest compression,” Phys. Lett. A 383, 2285 (2019).10.1016/j.physleta.2019.04.048
|
[28] |
C. Perego, D. Batani, A. Zani, and M. Passoni, “Target normal sheath acceleration analytical modeling, comparative study and developments,” Rev. Sci. Instrum. 83, 02B502 (2012).10.1063/1.3666188
|
[29] |
M. Passoni, C. Perego, A. Sgattoni, and D. Batani, “Advances in target normal sheath acceleration theory,” Phys. Plasmas 20, 060701 (2013).10.1063/1.4812708
|
[30] |
D. Batani, G. Boutoux, F. Burgy, K. Jakubowska, and J. E. Ducret, “Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime,” Phys. Plasmas 25, 054506 (2018).10.1063/1.5029854
|
[31] |
V. Malka, J. Faure, S. Fritzler, M. Manclossi, A. Guemnie-Tafo, E. d’Humières, E. Lefebvre, and D. Batani, “Production of energetic proton beams with lasers,” Rev. Sci. Instrum. 67, 03B302 (2006).10.1063/1.2170031
|
[32] | |
[33] |