Citation: | Tang Suo, Xin Yu, Wen Meng, Bake Mamat Ali, Xie Baisong. Fully polarized Compton scattering in plane waves and its polarization transfer[J]. Matter and Radiation at Extremes, 2024, 9(3): 037204. doi: 10.1063/5.0196125 |
[1] |
M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).10.1038/nature01143
|
[2] |
K. J. Weeks, V. N. Litvinenko, and J. M. J. Madey, “The Compton backscattering process and radiotherapy,” Med. Phys. 24, 417–423 (1997).10.1118/1.597903
|
[3] |
K. Horikawa, S. Miyamoto, T. Mochizuki, S. Amano, D. Li, K. Imasaki, Y. Izawa, K. Ogata, S. Chiba, and T. Hayakawa, “Neutron angular distribution in (γ, n) reactions with linearly polarized γ-ray beam generated by laser Compton scattering,” Phys. Lett. B 737, 109–113 (2014).10.1016/j.physletb.2014.08.024
|
[4] |
G. Sarri, K. Poder, J. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L. Gizzi, G. Grittani et al., “Generation of neutral and high-density electron–positron pair plasmas in the laboratory,” Nat. Commun. 6, 6747 (2015).10.1038/ncomms7747
|
[5] |
K. Homma, K. Matsuura, and K. Nakajima, “Testing helicity-dependent γγ → γγ scattering in the region of MeV,” Prog. Theor. Exp. Phys. 2016, 013C01.10.1093/ptep/ptv176
|
[6] |
A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177
|
[7] |
A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, and G. Torgrimsson, “Advances in QED with intense background fields,” Phys. Rep. 1010, 1–138 (2023), advances in QED with intense background fields.10.1016/j.physrep.2023.01.003
|
[8] |
A. Gonoskov, T. G. Blackburn, M. Marklund, and S. S. Bulanov, “Charged particle motion and radiation in strong electromagnetic fields,” Rev. Mod. Phys. 94, 045001 (2022).10.1103/revmodphys.94.045001
|
[9] |
J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, and S. P. D. Mangles, “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/physrevx.8.011020
|
[10] |
K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. D. Baird, K. Behm, S. Bohlen, J. M. Cole, D. J. Corvan, M. Duff, E. Gerstmayr, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, P. McKenna, C. D. Murphy, Z. Najmudin, C. P. Ridgers, G. M. Samarin, D. R. Symes, A. G. R. Thomas, J. Warwick, and M. Zepf, “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).10.1103/physrevx.8.031004
|
[11] |
C. Bula et al., “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116–3119 (1996).10.1103/physrevlett.76.3116
|
[12] |
C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, “Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses,” Phys. Rev. D 60, 092004 (1999).10.1103/physrevd.60.092004
|
[13] | |
[14] | |
[15] |
F. C. Salgado, N. Cavanagh, M. Tamburini, D. W. Storey, R. Beyer, P. H. Bucksbaum, Z. Chen, A. Di Piazza, E. Gerstmayr, Harsh, E. Isele, A. R. Junghans, C. H. Keitel, S. Kuschel, C. F. Nielsen, D. A. Reis, C. Roedel, G. Sarri, A. Seidel, C. Schneider, U. I. Uggerhøj, J. Wulff, V. Yakimenko, C. Zepter, and S. Meuren, “Single particle detection system for strong-field QED experiments,” New J. Phys. 24, 015002 (2021).10.1088/1367-2630/ac4283
|
[16] |
H. Abramowicz et al., “Conceptual design report for the LUXE experiment,” Eur. Phys. J. Spec. Top. 230, 2445–2560 (2021).10.1140/epjs/s11734-021-00249-z
|
[17] |
M. Borysova, “Studies of high-field QED with the luxe experiment at the European XFEL,” J. Instrum. 16, C12030 (2021).10.1088/1748-0221/16/12/c12030
|
[18] |
A. J. Macleod, “From theory to precision modelling of strong-field QED in the transition regime,” J. Phys.: Conf. Ser 2249, 012022 (2022).10.1088/1742-6596/2249/1/012022
|
[19] |
A. Nikishov and V. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field. I,” Sov. Phys. JETP 19, 529–541 (1964).
|
[20] |
L. S. Brown and T. W. B. Kibble, “Interaction of intense laser beams with electrons,” Phys. Rev. 133, A705–A719 (1964).10.1103/physrev.133.a705
|
[21] |
D. Yu. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave,” Eur. Phys. J. C 36, 127–145 (2004); arXiv:hep-ph/0402139 [hep-ph].10.1140/epjc/s2004-01861-x
|
[22] |
C. Harvey, T. Heinzl, and A. Ilderton, “Signatures of high-intensity Compton scattering,” Phys. Rev. A 79, 063407 (2009).10.1103/physreva.79.063407
|
[23] |
M. Boca and V. Florescu, “Nonlinear Compton scattering with a laser pulse,” Phys. Rev. A 80, 053403 (2009).10.1103/physreva.80.053403
|
[24] |
F. Mackenroth, A. Di Piazza, and C. H. Keitel, “Determining the carrier-envelope phase of intense few-cycle laser pulses,” Phys. Rev. Lett. 105, 063903 (2010).10.1103/physrevlett.105.063903
|
[25] |
T. Heinzl, D. Seipt, and B. Kämpfer, “Beam-shape effects in nonlinear Compton and Thomson scattering,” Phys. Rev. A 81, 022125 (2010).10.1103/physreva.81.022125
|
[26] |
F. Mackenroth and A. Di Piazza, “Nonlinear Compton scattering in ultrashort laser pulses,” Phys. Rev. A 83, 032106 (2011).10.1103/physreva.83.032106
|
[27] |
D. Seipt and B. Kämpfer, “Nonlinear Compton scattering of ultrashort intense laser pulses,” Phys. Rev. A 83, 022101 (2011).10.1103/physreva.83.022101
|
[28] |
S. Tang, B. King, and H. Hu, “Highly polarised gamma photons from electron-laser collisions,” Phys. Lett. B 809, 135701 (2020).10.1016/j.physletb.2020.135701
|
[29] |
A. Ilderton, B. King, and S. Tang, “Toward the observation of interference effects in nonlinear Compton scattering,” Phys. Lett. B 804, 135410 (2020).10.1016/j.physletb.2020.135410
|
[30] |
C. F. Nielsen, R. Holtzapple, and B. King, “High-resolution modeling of nonlinear Compton scattering in focused laser pulses,” Phys. Rev. D 106, 013010 (2022).10.1103/physrevd.106.013010
|
[31] |
A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, and E. Wallin, “Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments,” Phys. Rev. E 92, 023305 (2015).10.1103/physreve.92.023305
|
[32] |
T. Blackburn, “Radiation reaction in electron–beam interactions with high-intensity lasers,” Rev. Mod. Plasma Phys. 4, 5 (2020).10.1007/s41614-020-0042-0
|
[33] |
B. King, “Double Compton scattering in a constant crossed field,” Phys. Rev. A 91, 033415 (2015).10.1103/physreva.91.033415
|
[34] |
D. Del Sorbo, D. Seipt, T. G. Blackburn, A. G. R. Thomas, C. D. Murphy, J. G. Kirk, and C. P. Ridgers, “Spin polarization of electrons by ultraintense lasers,” Phys. Rev. A 96, 043407 (2017).10.1103/physreva.96.043407
|
[35] |
D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Theory of radiative electron polarization in strong laser fields,” Phys. Rev. A 98, 023417 (2018).10.1103/physreva.98.023417
|
[36] |
D. Del Sorbo, D. Seipt, A. G. R. Thomas, and C. P. Ridgers, “Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers,” Plasma Phys. Controlled Fusion 60, 064003 (2018).10.1088/1361-6587/aab979
|
[37] |
Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801
|
[38] |
T. N. Wistisen and A. Di Piazza, “Numerical approach to the semiclassical method of radiation emission for arbitrary electron spin and photon polarization,” Phys. Rev. D 100, 116001 (2019).10.1103/physrevd.100.116001
|
[39] |
B. King and S. Tang, “Nonlinear Compton scattering of polarized photons in plane-wave backgrounds,” Phys. Rev. A 102, 022809 (2020).10.1103/physreva.102.022809
|
[40] |
D. Seipt and B. King, “Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes,” Phys. Rev. A 102, 052805 (2020).10.1103/physreva.102.052805
|
[41] |
D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402(R) (2019).10.1103/physreva.100.061402
|
[42] |
K. Blum, Density Matrix Theory and Applications (Springer Science & Business Media, 2012), Vol. 64.
|
[43] |
V. V. Balashov, A. N. Grum-Grzhimailo, and N. M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions: A Practical Theory Course (Springer Science & Business Media, 2013).
|
[44] |
S. Tang, “Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves,” Phys. Rev. D 105, 056018 (2022).10.1103/physrevd.105.056018
|
[45] |
S. Tang and B. King, “Locally monochromatic two-step nonlinear trident process in a plane wave,” Phys. Rev. D 107, 096004 (2023).10.1103/physrevd.107.096004
|
[46] |
D. Seipt and B. Kämpfer, “Two-photon Compton process in pulsed intense laser fields,” Phys. Rev. D 85, 101701 (2012).10.1103/physrevd.85.101701
|
[47] |
H. Gies, F. Karbstein, C. Kohlfürst, and N. Seegert, “Photon-photon scattering at the high-intensity Frontier,” Phys. Rev. D 97, 076002 (2018).10.1103/physrevd.97.076002
|
[48] |
Y. Gao and S. Tang, “Optimal photon polarization toward the observation of the nonlinear Breit-Wheeler pair production,” Phys. Rev. D 106, 056003 (2022).10.1103/physrevd.106.056003
|
[49] |
G. A. Krafft and G. Priebe, “Compton sources of electromagnetic radiation,” Rev. Accel. Sci. Technol. 03, 147–163 (2010).10.1142/S1793626810000440
|
[50] |
W. S. Graves, J. Bessuille, P. Brown, S. Carbajo, V. Dolgashev, K.-H. Hong, E. Ihloff, B. Khaykovich, H. Lin, K. Murari, E. A. Nanni, G. Resta, S. Tantawi, L. E. Zapata, F. X. Kärtner, and D. E. Moncton, “Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz,” Phys. Rev. ST Accel. Beams 17, 120701 (2014).10.1103/physrevstab.17.120701
|
[51] |
B. Günther, R. Gradl, C. Jud, E. Eggl, J. Huang, S. Kulpe, K. Achterhold, B. Gleich, M. Dierolf, and F. Pfeiffer, “The versatile X-ray beamline of the Munich Compact light source: Design, instrumentation and applications,” J. Synchrotron Radiat. 27, 1395–1414 (2020).10.1107/s1600577520008309
|
[52] |
A. Di Piazza, “Analytical tools for investigating strong-field QED processes in tightly focused laser fields,” Phys. Rev. A 91, 042118 (2015).10.1103/physreva.91.042118
|
[53] |
A. Di Piazza, “Nonlinear Breit-Wheeler pair production in a tightly focused laser beam,” Phys. Rev. Lett. 117, 213201 (2016).10.1103/physrevlett.117.213201
|
[54] |
A. Di Piazza, “First-order strong-field QED processes in a tightly focused laser beam,” Phys. Rev. A 95, 032121 (2017).10.1103/physreva.95.032121
|
[55] |
A. Di Piazza, “Wkb electron wave functions in a tightly focused laser beam,” Phys. Rev. D 103, 076011 (2021).10.1103/physrevd.103.076011
|
[56] |
Y. Nagashima, Elementary Particle Physics: Quantum Field Theory and Particles V1 (John Wiley & Sons, 2011), Vol. 1.
|
[57] |
M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014), p. 168.
|
[58] |
M. E. Peskin, An Introduction to Quantum Field Theory (CRC Press, 2018), p. 40.
|
[59] |
V. Dinu, C. Harvey, A. Ilderton, M. Marklund, and G. Torgrimsson, “Quantum radiation reaction: From interference to incoherence,” Phys. Rev. Lett. 116, 044801 (2016).10.1103/physrevlett.116.044801
|
[60] | |
[61] |
A. Ilderton, B. King, and D. Seipt, “Extended locally constant field approximation for nonlinear Compton scattering,” Phys. Rev. A 99, 042121 (2019).10.1103/physreva.99.042121
|
[62] |
G. A. Krafft, B. Terzić, E. Johnson, and G. Wilson, “Scattered spectra from inverse Compton sources operating at high laser fields and high electron energies,” Phys. Rev. Accel. Beams 26, 034401 (2023).10.1103/physrevaccelbeams.26.034401
|
[63] |
V. Petrillo, A. Bacci, C. Curatolo, I. Drebot, A. Giribono, C. Maroli, A. R. Rossi, L. Serafini, P. Tomassini, C. Vaccarezza, and A. Variola, “Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering,” Phys. Rev. ST Accel. Beams 18, 110701 (2015).10.1103/physrevstab.18.110701
|
[64] |
K. Aulenbacher, E. Chudakov, D. Gaskell, J. Grames, and K. D. Paschke, “Precision electron beam polarimetry for next generation nuclear physics experiments,” Int. J. Mod. Phys. E 27, 1830004 (2018).10.1142/S0218301318300047
|
[65] |
O. Klein and Y. Nishina, “Über die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von Dirac,” Z. Phys. 52, 853–868 (1929).10.1007/bf01366453
|
[66] |
T. G. Blackburn, A. J. MacLeod, and B. King, “From local to nonlocal: Higher fidelity simulations of photon emission in intense laser pulses,” New J. Phys. 23, 085008 (2021).10.1088/1367-2630/ac1bf6
|
[67] |
T. G. Blackburn, Ptarmigan (2021) https://github.com/tgblackburn/ptarmigan.
|
[68] |
V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).10.1007/BF01120220
|
[69] |
T. Heinzl, B. King, and A. J. MacLeod, “Locally monochromatic approximation to QED in intense laser fields,” Phys. Rev. A 102, 063110 (2020).10.1103/physreva.102.063110
|
[70] |
A. I. Titov, B. Kämpfer, A. Hosaka, T. Nousch, and D. Seipt, “Determination of the carrier envelope phase for short, circularly polarized laser pulses,” Phys. Rev. D 93, 045010 (2016).10.1103/physrevd.93.045010
|
[71] |
B. King, “Interference effects in nonlinear Compton scattering due to pulse envelope,” Phys. Rev. D 103, 036018 (2021).10.1103/physrevd.103.036018
|
[72] |
A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, “Improved local-constant-field approximation for strong-field QED codes,” Phys. Rev. A 99, 022125 (2019).10.1103/physreva.99.022125
|