Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Wang Y. X., Zhu X. L., Weng S. M., Li P., Li X. F., Ai H., Pan H. R., Sheng Z. M.. Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies[J]. Matter and Radiation at Extremes, 2024, 9(3): 037201. doi: 10.1063/5.0189638
Citation: Wang Y. X., Zhu X. L., Weng S. M., Li P., Li X. F., Ai H., Pan H. R., Sheng Z. M.. Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies[J]. Matter and Radiation at Extremes, 2024, 9(3): 037201. doi: 10.1063/5.0189638

Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies

doi: 10.1063/5.0189638
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wengsuming@sjtu.edu.cn
  • Received Date: 2023-11-30
  • Accepted Date: 2024-01-28
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • The generation of ultrashort high-power light sources in the mid-infrared (mid-IR) to terahertz (THz) range is of interest for applications in a number of fields, from fundamental research to biology and medicine. Besides conventional laser technology, photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses. Here, we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength. The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse. Owing to its relatively long wavelength, the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble. Consequently, the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths. This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.
  • loading
  • [1]
    I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721 (2015).10.1038/nphoton.2015.179
    [2]
    P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222 (2017).10.1038/nphoton.2017.34
    [3]
    X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16 (2017).10.1038/nphoton.2016.249
    [4]
    B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics with mid-IR fields,” Phys. Rev. X 5, 021034 (2015).10.1103/physrevx.5.021034
    [5]
    S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7, 138 (2010).10.1038/nphys1847
    [6]
    T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287 (2012).10.1126/science.1218497
    [7]
    J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8, 927 (2014).10.1038/nphoton.2014.256
    [8]
    E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).10.1038/ncomms9486
    [9]
    C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483, 194 (2012).10.1038/nature10820
    [10]
    I. Pupeza, M. Huber, M. Trubetskov, W. Schweinberger, S. A. Hussain, C. Hofer, K. Fritsch, M. Poetzlberger, L. Vamos, E. Fill, T. Amotchkina, K. V. Kepesidis, A. Apolonski, N. Karpowicz, V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Zigman, and F. Krausz, “Field-resolved infrared spectroscopy of biological systems,” Nature 577, 52 (2020).10.1038/s41586-019-1850-7
    [11]
    D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18, 17865 (2010).10.1364/oe.18.017865
    [12]
    M. N. Polyanskiy, I. V. Pogorelsky, and V. Yakimenko, “Picosecond pulse amplification in isotopic CO2 active medium,” Opt. Express 19, 7717 (2011).10.1364/oe.19.007717
    [13]
    A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3, 299 (2016).10.1364/optica.3.000299
    [14]
    V. Shumakova, P. Malevich, S. Alisauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuska, and A. Pugzlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).10.1038/ncomms12877
    [15]
    H. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L. F. DiMauro, F. X. Kartner, and K. H. Hong, “High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier,” Nat. Commun. 8, 141 (2017).10.1038/s41467-017-00193-4
    [16]
    S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).10.1088/1361-6463/50/4/043001
    [17]
    D. Tovey, S. Y. Tochitsky, J. J. Pigeon, G. J. Louwrens, M. N. Polyanskiy, I. Ben-Zvi, and C. Joshi, “Multi-atmosphere picosecond CO2 amplifier optically pumped at 43 μm,” Appl. Opt. 58, 5756 (2019).10.1364/ao.58.005756
    [18]
    M. N. Polyanskiy, I. V. Pogorelsky, M. Babzien, and M. A. Palmer, “Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers,” OSA Continuum 3, 459 (2020).10.1364/osac.381467
    [19]
    P. Panagiotopoulos, M. G. Hastings, M. Kolesik, S. Tochitsky, and J. V. Moloney, “Multi-terawatt femtosecond 10 μm laser pulses by self-compression in a CO2 cell,” OSA Continuum 3, 3040 (2020).10.1364/osac.399992
    [20]
    F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29 (2002).10.1073/pnas.262543899
    [21]
    Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, “Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nat. Photonics 12, 489 (2018).10.1038/s41566-018-0190-8
    [22]
    Z. Nie, C. H. Pai, J. Zhang, X. Ning, J. Hua, Y. He, Y. Wu, Q. Su, S. Liu, Y. Ma, Z. Cheng, W. Lu, H. H. Chu, J. Wang, C. Zhang, W. B. Mori, and C. Joshi, “Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses,” Nat. Commun. 11, 2787 (2020).10.1038/s41467-020-16541-w
    [23]
    Z. Nie, Y. P. Wu, C. J. Zhang, W. B. Mori, C. Joshi, W. Lu, C. H. Pai, J. F. Hua, and J. Wang, “Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts,” Phys. Plasmas 28, 023106 (2021).10.1063/5.0039301
    [24]
    E. Esarey, A. Ting, and P. Sprangle, “Frequency shifts induced in laser pulses by plasma waves,” Phys. Rev. A 42, 3526 (1990).10.1103/physreva.42.3526
    [25]
    B. A. Shadwick, C. B. Schroeder, and E. Esarey, “Nonlinear laser energy depletion in laser-plasma accelerators,” Phys. Plasmas 16, 056704 (2009).10.1063/1.3124185
    [26]
    W. Zhu, J. P. Palastro, and T. M. Antonsen, “Studies of spectral modification and limitations of the modified paraxial equation in laser wakefield simulations,” Phys. Plasmas 19, 033105 (2012).10.1063/1.3691837
    [27]
    X. L. Zhu, S. M. Weng, M. Chen, Z. M. Sheng, and J. Zhang, “Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas,” Light: Sci. Appl. 9, 46 (2020).10.1038/s41377-020-0282-3
    [28]
    X.-L. Zhu, W.-Y. Liu, S.-M. Weng, M. Chen, Z.-M. Sheng, and J. Zhang, “Generation of single-cycle relativistic infrared pulses at wavelengths above 20 μm from density-tailored plasmas,” Matter Radiat. Extremes 7, 014403 (2022).10.1063/5.0068265
    [29]
    [30]
    I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in ‘bubble’ regime,” Phys. Plasmas 11, 5256 (2004).10.1063/1.1799371
    [31]
    W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.-Accel. Beams 10, 061301 (2007).10.1103/physrevstab.10.061301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (97) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return