Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Liu Q. K., Deng L., Wang Q., Zhang X., Meng F. Q., Wang Y. P., Gao Y. Q., Cai H. B., Zhu S. P.. Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses[J]. Matter and Radiation at Extremes, 2024, 9(4): 047402. doi: 10.1063/5.0189529
Citation: Liu Q. K., Deng L., Wang Q., Zhang X., Meng F. Q., Wang Y. P., Gao Y. Q., Cai H. B., Zhu S. P.. Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses[J]. Matter and Radiation at Extremes, 2024, 9(4): 047402. doi: 10.1063/5.0189529

Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses

doi: 10.1063/5.0189529
More Information
  • Author Bio:

    Electronic mail: zhu_shaoping@iapcm.ac.cn

  • Corresponding author: a)Author to whom correspondence should be addressed: cai_hongbo@iapcm.ac.cn
  • Received Date: 2023-11-29
  • Accepted Date: 2024-04-21
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-01
  • We examine electron kinetic effects in broadband-laser-driven back-stimulated Raman scattering (BSRS) bursts using particle-in-cell simulations. These bursts occur during the nonlinear stage, causing reflectivity spikes and generating large numbers of hot electrons. Long-duration simulations are performed to observe burst events, and a simplified model is developed to eliminate the interference of the broadband laser’s random intensity fluctuations. Using the simplified model, we isolate and characterize the spectrum of electron plasma waves. The spectrum changes from a sideband structure to a turbulence-like structure during the burst. A significant asymmetry in the spectrum is observed. This asymmetry is amplified and transferred to electron phase space by high-intensity broadband laser pulses, leading to violent vortex-merging and generation of hot electrons. The proportion of hot electrons increases from 6.76% to 14.7% during a single violent burst event. We demonstrate that kinetic effects profoundly influence the BSRS evolution driven by broadband lasers.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Q. K. Liu: Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). L. Deng: Investigation (equal); Methodology (equal); Writing – review & editing (equal). Q. Wang: Formal analysis (equal); Methodology (equal); Writing – review & editing (equal). X. Zhang: Visualization (equal); Writing – review & editing (equal). F. Q. Meng: Visualization (equal); Writing – review & editing (equal). Y. P. Wang: Visualization (equal); Writing – review & editing (equal). Y. Q. Gao: Conceptualization (equal); Investigation (equal); Writing – review & editing (equal). H. B. Cai: Conceptualization (equal); Funding acquisition (equal); Methodology (equal); Project administration (equal); Software (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). S. P. Zhu: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    E. M. Campbell, T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse, C. Sorce, G. W. Collins, M. S. Wei, R. Betti, S. P. Regan, D. H. Froula, C. Dorrer, D. R. Harding, V. Gopalaswamy, J. P. Knauer, R. Shah, O. M. Mannion, J. A. Marozas, P. B. Radha, M. J. Rosenberg, T. J. B. Collins, A. R. Christopherson, A. A. Solodov, D. Cao, J. P. Palastro, R. K. Follett, and M. Farrell, “Direct-drive laser fusion: Status, plans and future,” Philos. Trans. R. Soc., A 379, 20200011 (2021).10.1098/rsta.2020.0011
    [2]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
    [3]
    O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan, S. A. Slutz, M. R. Gomez, and M. A. Sweeney, “Physics principles of inertial confinement fusion and U.S. program overview,” Rev. Mod. Phys. 95, 025005 (2023).10.1103/revmodphys.95.025005
    [4]
    C. S. Liu, V. K. Tripathi, and B. Eliasson, High-Power Laser-Plasma Interaction, 1st ed. (Cambridge University Press, 2020).
    [5]
    D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016
    [6]
    H. X. Vu, D. F. DuBois, and B. Bezzerides, “Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping,” Phys. Rev. Lett. 86, 4306–4309 (2001).10.1103/physrevlett.86.4306
    [7]
    L. Yin, B. J. Albright, H. A. Rose, D. S. Montgomery, J. L. Kline, R. K. Kirkwood, J. Milovich, S. M. Finnegan, B. Bergen, and K. J. Bowers, “Stimulated scattering in laser driven fusion and high energy density physics experiments,” Phys. Plasmas 21, 092707 (2014).10.1063/1.4895504
    [8]
    B. Afeyan and S. Hüller, “Optimal control of laser plasma instabilities using spike trains of uneven duration and delay (STUD pulses) for ICF and IFE,” EPJ Web Conf. 59, 05009 (2013).10.1051/epjconf/20135905009
    [9]
    B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/physrevlett.113.045002
    [10]
    S. Hüller and B. Afeyan, “Simulations of drastically reduced SBS with laser pulses composed of a spike train of uneven duration and delay (STUD pulses),” EPJ Web Conf. 59, 05010 (2013).10.1051/epjconf/20135905010
    [11]
    Z. J. Liu, B. Li, J. Xiang, L. H. Cao, C. Y. Zheng, and L. Hao, “Faraday effect on stimulated Raman scattering in the linear region,” Plasma Phys. Controlled Fusion 60, 045008 (2018).10.1088/1361-6587/aaae32
    [12]
    Y. Z. Zhou, C. Y. Zheng, Z. J. Liu, and L. H. Cao, “Suppression of autoresonant stimulated Raman scattering in transversely weakly magnetized plasmas,” Plasma Phys. Controlled Fusion 63, 055015 (2021).10.1088/1361-6587/abf253
    [13]
    Y. Guo, X. Zhang, D. Xu, X. Guo, B. Shen, and K. Lan, “Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle,” Matter Radiat. Extremes 8, 035902 (2023).10.1063/5.0136567
    [14]
    Z. Liu, H. Ma, W. Wang, X. Li, P. Wang, C. Wang, S. H. Yew, S.-M. Weng, Z.-M. Sheng, and J. Zhang, “Parametric instabilities and hot electron generation in the interactions of broadband lasers with inhomogeneous plasmas,” Nucl. Fusion 63, 126010 (2023).10.1088/1741-4326/acf7d3
    [15]
    Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, and Z. Sheng, “Stimulated Raman scattering excited by incoherent light in plasma,” Matter Radiat. Extremes 2, 190–196 (2017).10.1016/j.mre.2017.06.001
    [16]
    Y. Zhao, S.-M. Weng, H.-H. Ma, X.-J. Bai, and Z.-M. Sheng, “Mitigation of laser plasma parametric instabilities with broadband lasers,” Rev. Mod. Plasma Phys. 7, 1 (2022).10.1007/s41614-022-00105-0
    [17]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
    [18]
    J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608 (1974).10.1063/1.1694940
    [19]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [20]
    A. R. Christopherson, R. Betti, C. J. Forrest, J. Howard, W. Theobald, J. A. Delettrez, M. J. Rosenberg, A. A. Solodov, C. Stoeckl, D. Patel, V. Gopalaswamy, D. Cao, J. L. Peebles, D. H. Edgell, W. Seka, R. Epstein, M. S. Wei, M. Gatu Johnson, R. Simpson, S. P. Regan, and E. M. Campbell, “Direct measurements of DT fuel preheat from hot electrons in direct-drive inertial confinement fusion,” Phys. Rev. Lett. 127, 055001 (2021).10.1103/physrevlett.127.055001
    [21]
    J. Bates, R. Follett, J. Shaw, S. Obenschain, R. Lehmberg, J. Myatt, J. Weaver, D. Kehne, M. Wolford, M. Myers, and T. Kessler, “Suppressing cross-beam energy transfer with broadband lasers,” High Energy Density Phys. 36, 100772 (2020).10.1016/j.hedp.2020.100772
    [22]
    Y. Chen, C. Zheng, Z. Liu, L.-h. Cao, and C. Xiao, “Effects of frequency-modulated pump on stimulated Brillouin scattering in inhomogeneous plasmas,” Plasma Phys. Controlled Fusion 65, 125002 (2023).10.1088/1361-6587/ad02bd
    [23]
    R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
    [24]
    R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro, “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
    [25]
    Y. Zhao, L.-L. Yu, J. Zheng, S.-M. Weng, C. Ren, C.-S. Liu, and Z.-M. Sheng, “Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma,” Phys. Plasmas 22, 052119 (2015).10.1063/1.4921659
    [26]
    H. Wen, R. K. Follett, A. V. Maximov, D. H. Froula, F. S. Tsung, and J. P. Palastro, “Suppressing the enhancement of stimulated Raman scattering in inhomogeneous plasmas by tuning the modulation frequency of a broadband laser,” Phys. Plasmas 28, 042109 (2021).10.1063/5.0036768
    [27]
    Q. K. Liu, E. H. Zhang, W. S. Zhang, H. B. Cai, Y. Q. Gao, Q. Wang, and S. P. Zhu, “Non-linear stimulated Raman back-scattering burst driven by a broadband laser,” Phys. Plasmas 29, 102105 (2022).10.1063/5.0105089
    [28]
    H. Y. Zhou, C. Z. Xiao, D. B. Zou, X. Z. Li, Y. Yin, F. Q. Shao, and H. B. Zhuo, “Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime,” Phys. Plasmas 25, 062703 (2018).10.1063/1.5030153
    [29]
    Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren, Z. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
    [30]
    S. P. Obenschain, R. H. Lehmberg et al., “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” in Conference on Lasers and Electro-Optics (Optica Publishing Group, 1983), Vol. 46.
    [31]
    J. W. Goodman, in Statistical Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, Hoboken, NJ, 2015).
    [32]
    C. Dorrer, M. Spilatro, S. Herman, T. Borger, and E. M. Hill, “Broadband sum-frequency generation of spectrally incoherent pulses,” Opt. Express 29, 16135 (2021).10.1364/oe.424167
    [33]
    P. Wang, H. An, Z. Fang, J. Xiong, Z. Xie, C. Wang, Z. He, G. Jia, R. Wang, S. Zheng, L. Xia, W. Feng, H. Shi, W. Wang, J. Sun, Y. Gao, and S. Fu, “Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target,” Matter Radiat. Extremes 9, 015602 (2024).10.1063/5.0122406
    [34]
    A. Lei, N. Kang, Y. Zhao, H. Liu, H. An, J. Xiong, R. Wang, Z. Xie, Y. Tu, G. Xu, X. Zhou, Z. Fang, W. Wang, L. Xia, W. Feng, X. Zhao, L. Ji, Y. Cui, S. Zhou, Z. Liu, C. Zheng, L. Wang, Y. Gao, X. Huang, and S. Fu, “Reduction of backward scatterings at the low-coherence kunwu laser facility,” Phys. Rev. Lett. 132, 035102 (2024).10.1103/physrevlett.132.035102
    [35]
    H.-b. Cai, X.-x. Yan, P.-l. Yao, and S.-p. Zhu, “Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma,” Matter Radiat. Extremes 6, 035901 (2021).10.1063/5.0042973
    [36]
    J. L. Kline, D. S. Montgomery, B. Bezzerides, J. A. Cobble, D. F. DuBois, R. P. Johnson, H. A. Rose, L. Yin, and H. X. Vu, “Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter,” Phys. Rev. Lett. 94, 175003 (2005).10.1103/physrevlett.94.175003
    [37]
    B. J. Winjum, J. E. Fahlen, F. S. Tsung, and W. B. Mori, “Effects of plasma wave packets and local pump depletion in stimulated Raman scattering,” Phys. Rev. E 81, 045401 (2010).10.1103/physreve.81.045401
    [38]
    B. J. Winjum, A. Tableman, F. S. Tsung, and W. B. Mori, “Interactions of laser speckles due to kinetic stimulated Raman scattering,” Phys. Plasmas 26, 112701 (2019).10.1063/1.5110513
    [39]
    W. L. Kruer, J. M. Dawson, and R. N. Sudan, “Trapped-particle instability,” Phys. Rev. Lett. 23, 838–841 (1969).10.1103/physrevlett.23.838
    [40]
    T. O’Neil, “Collisionless damping of nonlinear plasma oscillations,” Phys. Fluids 8, 2255 (1965).10.1063/1.1761193
    [41]
    S. Brunner, R. L. Berger, B. I. Cohen, L. Hausammann, and E. J. Valeo, “Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves,” Phys. Plasmas 21, 102104 (2014).10.1063/1.4896753
    [42]
    T. Yang, Q. S. Feng, Y. X. Wang, Y. Z. Zhou, S. S. Ban, S. T. Zhang, R. Xie, Y. Jiang, L. H. Cao, Z. J. Liu, and C. Y. Zheng, “Saturation of trapped particle instability induced by vortex-merging in electron plasma waves,” Plasma Phys. Controlled Fusion 62, 095009 (2020).10.1088/1361-6587/ab9d68
    [43]
    Y. X. Wang, Q. Wang, C. Y. Zheng, Z. J. Liu, C. S. Liu, and X. T. He, “Nonlinear transition from convective to absolute Raman instability with trapped electrons and inflationary growth of reflectivity,” Phys. Plasmas 25, 100702 (2018).10.1063/1.5040095
    [44]
    H. Vu, L. Yin, D. DuBois, B. Bezzerides, and E. Dodd, “Nonlinear spectral signatures and spatiotemporal behavior of stimulated Raman scattering from single laser speckles,” Phys. Rev. Lett. 95, 245003 (2005).10.1103/physrevlett.95.245003
    [45]
    L. Yin, B. J. Albright, K. J. Bowers, W. Daughton, and H. A. Rose, “Saturation of backward stimulated scattering of a laser beam in the kinetic regime,” Phys. Rev. Lett. 99, 265004 (2007).10.1103/physrevlett.99.265004
    [46]
    S. Brunner and E. J. Valeo, “Trapped-particle instability leading to bursting in stimulated Raman scattering simulations,” Phys. Rev. Lett. 93, 145003 (2004).10.1103/physrevlett.93.145003
    [47]
    M. Mašek and K. Rohlena, “Stimulated Raman scattering in the presence of trapped particle instability,” Commun. Nonlinear Sci. Numer. Simul. 13, 125–129 (2008).10.1016/j.cnsns.2007.04.011
    [48]
    L. Yin, B. J. Albright, H. A. Rose, K. J. Bowers, B. Bergen, D. S. Montgomery, J. L. Kline, and J. C. Fernández, “Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions,” Phys. Plasmas 16, 113101 (2009).10.1063/1.3250928
    [49]
    L. Yin, B. J. Albright, H. A. Rose, K. J. Bowers, B. Bergen, and R. K. Kirkwood, “Self-organized bursts of coherent stimulated Raman scattering and hot electron transport in speckled laser plasma media,” Phys. Rev. Lett. 108, 245004 (2012).10.1103/physrevlett.108.245004
    [50]
    L. Yin, B. J. Albright, H. A. Rose, D. S. Montgomery, J. L. Kline, R. K. Kirkwood, P. Michel, K. J. Bowers, and B. Bergen, “Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams,” Phys. Plasmas 20, 012702 (2013).10.1063/1.4774964
    [51]
    D. J. Stark, L. Yin, B. J. Albright, A. Seaton, and R. F. Bird, “Forward and backward stimulated Raman scattering in multi-speckled beams: Density dependence and effects on cross-beam energy transfer,” Phys. Plasmas 28, 022702 (2021).10.1063/5.0022091
    [52]
    D. J. Stark, L. Yin, T. B. Nguyen, G. Chen, L. Chacon, B. M. Haines, and L. Green, “Nonlinear models for coupling the effects of stimulated Raman scattering to inertial confinement fusion codes,” Phys. Plasmas 30, 042714 (2023).10.1063/5.0134881
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (48) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return