Citation: | Liu Q. K., Deng L., Wang Q., Zhang X., Meng F. Q., Wang Y. P., Gao Y. Q., Cai H. B., Zhu S. P.. Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses[J]. Matter and Radiation at Extremes, 2024, 9(4): 047402. doi: 10.1063/5.0189529 |
[1] |
E. M. Campbell, T. C. Sangster, V. N. Goncharov, J. D. Zuegel, S. F. B. Morse, C. Sorce, G. W. Collins, M. S. Wei, R. Betti, S. P. Regan, D. H. Froula, C. Dorrer, D. R. Harding, V. Gopalaswamy, J. P. Knauer, R. Shah, O. M. Mannion, J. A. Marozas, P. B. Radha, M. J. Rosenberg, T. J. B. Collins, A. R. Christopherson, A. A. Solodov, D. Cao, J. P. Palastro, R. K. Follett, and M. Farrell, “Direct-drive laser fusion: Status, plans and future,” Philos. Trans. R. Soc., A 379, 20200011 (2021).10.1098/rsta.2020.0011
|
[2] |
R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
|
[3] |
O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan, S. A. Slutz, M. R. Gomez, and M. A. Sweeney, “Physics principles of inertial confinement fusion and U.S. program overview,” Rev. Mod. Phys. 95, 025005 (2023).10.1103/revmodphys.95.025005
|
[4] |
C. S. Liu, V. K. Tripathi, and B. Eliasson, High-Power Laser-Plasma Interaction, 1st ed. (Cambridge University Press, 2020).
|
[5] |
D. S. Montgomery, “Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion,” Phys. Plasmas 23, 055601 (2016).10.1063/1.4946016
|
[6] |
H. X. Vu, D. F. DuBois, and B. Bezzerides, “Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping,” Phys. Rev. Lett. 86, 4306–4309 (2001).10.1103/physrevlett.86.4306
|
[7] |
L. Yin, B. J. Albright, H. A. Rose, D. S. Montgomery, J. L. Kline, R. K. Kirkwood, J. Milovich, S. M. Finnegan, B. Bergen, and K. J. Bowers, “Stimulated scattering in laser driven fusion and high energy density physics experiments,” Phys. Plasmas 21, 092707 (2014).10.1063/1.4895504
|
[8] |
B. Afeyan and S. Hüller, “Optimal control of laser plasma instabilities using spike trains of uneven duration and delay (STUD pulses) for ICF and IFE,” EPJ Web Conf. 59, 05009 (2013).10.1051/epjconf/20135905009
|
[9] |
B. J. Albright, L. Yin, and B. Afeyan, “Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay,” Phys. Rev. Lett. 113, 045002 (2014).10.1103/physrevlett.113.045002
|
[10] |
S. Hüller and B. Afeyan, “Simulations of drastically reduced SBS with laser pulses composed of a spike train of uneven duration and delay (STUD pulses),” EPJ Web Conf. 59, 05010 (2013).10.1051/epjconf/20135905010
|
[11] |
Z. J. Liu, B. Li, J. Xiang, L. H. Cao, C. Y. Zheng, and L. Hao, “Faraday effect on stimulated Raman scattering in the linear region,” Plasma Phys. Controlled Fusion 60, 045008 (2018).10.1088/1361-6587/aaae32
|
[12] |
Y. Z. Zhou, C. Y. Zheng, Z. J. Liu, and L. H. Cao, “Suppression of autoresonant stimulated Raman scattering in transversely weakly magnetized plasmas,” Plasma Phys. Controlled Fusion 63, 055015 (2021).10.1088/1361-6587/abf253
|
[13] |
Y. Guo, X. Zhang, D. Xu, X. Guo, B. Shen, and K. Lan, “Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle,” Matter Radiat. Extremes 8, 035902 (2023).10.1063/5.0136567
|
[14] |
Z. Liu, H. Ma, W. Wang, X. Li, P. Wang, C. Wang, S. H. Yew, S.-M. Weng, Z.-M. Sheng, and J. Zhang, “Parametric instabilities and hot electron generation in the interactions of broadband lasers with inhomogeneous plasmas,” Nucl. Fusion 63, 126010 (2023).10.1088/1741-4326/acf7d3
|
[15] |
Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, and Z. Sheng, “Stimulated Raman scattering excited by incoherent light in plasma,” Matter Radiat. Extremes 2, 190–196 (2017).10.1016/j.mre.2017.06.001
|
[16] |
Y. Zhao, S.-M. Weng, H.-H. Ma, X.-J. Bai, and Z.-M. Sheng, “Mitigation of laser plasma parametric instabilities with broadband lasers,” Rev. Mod. Plasma Phys. 7, 1 (2022).10.1007/s41614-022-00105-0
|
[17] |
H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata, P. Gibbon, Z. M. Sheng, and J. Zhang, “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
|
[18] |
J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17, 1608 (1974).10.1063/1.1694940
|
[19] |
Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
|
[20] |
A. R. Christopherson, R. Betti, C. J. Forrest, J. Howard, W. Theobald, J. A. Delettrez, M. J. Rosenberg, A. A. Solodov, C. Stoeckl, D. Patel, V. Gopalaswamy, D. Cao, J. L. Peebles, D. H. Edgell, W. Seka, R. Epstein, M. S. Wei, M. Gatu Johnson, R. Simpson, S. P. Regan, and E. M. Campbell, “Direct measurements of DT fuel preheat from hot electrons in direct-drive inertial confinement fusion,” Phys. Rev. Lett. 127, 055001 (2021).10.1103/physrevlett.127.055001
|
[21] |
J. Bates, R. Follett, J. Shaw, S. Obenschain, R. Lehmberg, J. Myatt, J. Weaver, D. Kehne, M. Wolford, M. Myers, and T. Kessler, “Suppressing cross-beam energy transfer with broadband lasers,” High Energy Density Phys. 36, 100772 (2020).10.1016/j.hedp.2020.100772
|
[22] |
Y. Chen, C. Zheng, Z. Liu, L.-h. Cao, and C. Xiao, “Effects of frequency-modulated pump on stimulated Brillouin scattering in inhomogeneous plasmas,” Plasma Phys. Controlled Fusion 65, 125002 (2023).10.1088/1361-6587/ad02bd
|
[23] |
R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26, 062111 (2019).10.1063/1.5098479
|
[24] |
R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro, “Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers,” Phys. Plasmas 28, 032103 (2021).10.1063/5.0037869
|
[25] |
Y. Zhao, L.-L. Yu, J. Zheng, S.-M. Weng, C. Ren, C.-S. Liu, and Z.-M. Sheng, “Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma,” Phys. Plasmas 22, 052119 (2015).10.1063/1.4921659
|
[26] |
H. Wen, R. K. Follett, A. V. Maximov, D. H. Froula, F. S. Tsung, and J. P. Palastro, “Suppressing the enhancement of stimulated Raman scattering in inhomogeneous plasmas by tuning the modulation frequency of a broadband laser,” Phys. Plasmas 28, 042109 (2021).10.1063/5.0036768
|
[27] |
Q. K. Liu, E. H. Zhang, W. S. Zhang, H. B. Cai, Y. Q. Gao, Q. Wang, and S. P. Zhu, “Non-linear stimulated Raman back-scattering burst driven by a broadband laser,” Phys. Plasmas 29, 102105 (2022).10.1063/5.0105089
|
[28] |
H. Y. Zhou, C. Z. Xiao, D. B. Zou, X. Z. Li, Y. Yin, F. Q. Shao, and H. B. Zhuo, “Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime,” Phys. Plasmas 25, 062703 (2018).10.1063/1.5030153
|
[29] |
Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren, Z. Sheng, and J. Zhang, “Effective suppression of parametric instabilities with decoupled broadband lasers in plasma,” Phys. Plasmas 24, 112102 (2017).10.1063/1.5003420
|
[30] |
S. P. Obenschain, R. H. Lehmberg et al., “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” in Conference on Lasers and Electro-Optics (Optica Publishing Group, 1983), Vol. 46.
|
[31] |
J. W. Goodman, in Statistical Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, Hoboken, NJ, 2015).
|
[32] |
C. Dorrer, M. Spilatro, S. Herman, T. Borger, and E. M. Hill, “Broadband sum-frequency generation of spectrally incoherent pulses,” Opt. Express 29, 16135 (2021).10.1364/oe.424167
|
[33] |
P. Wang, H. An, Z. Fang, J. Xiong, Z. Xie, C. Wang, Z. He, G. Jia, R. Wang, S. Zheng, L. Xia, W. Feng, H. Shi, W. Wang, J. Sun, Y. Gao, and S. Fu, “Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target,” Matter Radiat. Extremes 9, 015602 (2024).10.1063/5.0122406
|
[34] |
A. Lei, N. Kang, Y. Zhao, H. Liu, H. An, J. Xiong, R. Wang, Z. Xie, Y. Tu, G. Xu, X. Zhou, Z. Fang, W. Wang, L. Xia, W. Feng, X. Zhao, L. Ji, Y. Cui, S. Zhou, Z. Liu, C. Zheng, L. Wang, Y. Gao, X. Huang, and S. Fu, “Reduction of backward scatterings at the low-coherence kunwu laser facility,” Phys. Rev. Lett. 132, 035102 (2024).10.1103/physrevlett.132.035102
|
[35] |
H.-b. Cai, X.-x. Yan, P.-l. Yao, and S.-p. Zhu, “Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma,” Matter Radiat. Extremes 6, 035901 (2021).10.1063/5.0042973
|
[36] |
J. L. Kline, D. S. Montgomery, B. Bezzerides, J. A. Cobble, D. F. DuBois, R. P. Johnson, H. A. Rose, L. Yin, and H. X. Vu, “Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter,” Phys. Rev. Lett. 94, 175003 (2005).10.1103/physrevlett.94.175003
|
[37] |
B. J. Winjum, J. E. Fahlen, F. S. Tsung, and W. B. Mori, “Effects of plasma wave packets and local pump depletion in stimulated Raman scattering,” Phys. Rev. E 81, 045401 (2010).10.1103/physreve.81.045401
|
[38] |
B. J. Winjum, A. Tableman, F. S. Tsung, and W. B. Mori, “Interactions of laser speckles due to kinetic stimulated Raman scattering,” Phys. Plasmas 26, 112701 (2019).10.1063/1.5110513
|
[39] |
W. L. Kruer, J. M. Dawson, and R. N. Sudan, “Trapped-particle instability,” Phys. Rev. Lett. 23, 838–841 (1969).10.1103/physrevlett.23.838
|
[40] |
T. O’Neil, “Collisionless damping of nonlinear plasma oscillations,” Phys. Fluids 8, 2255 (1965).10.1063/1.1761193
|
[41] |
S. Brunner, R. L. Berger, B. I. Cohen, L. Hausammann, and E. J. Valeo, “Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves,” Phys. Plasmas 21, 102104 (2014).10.1063/1.4896753
|
[42] |
T. Yang, Q. S. Feng, Y. X. Wang, Y. Z. Zhou, S. S. Ban, S. T. Zhang, R. Xie, Y. Jiang, L. H. Cao, Z. J. Liu, and C. Y. Zheng, “Saturation of trapped particle instability induced by vortex-merging in electron plasma waves,” Plasma Phys. Controlled Fusion 62, 095009 (2020).10.1088/1361-6587/ab9d68
|
[43] |
Y. X. Wang, Q. Wang, C. Y. Zheng, Z. J. Liu, C. S. Liu, and X. T. He, “Nonlinear transition from convective to absolute Raman instability with trapped electrons and inflationary growth of reflectivity,” Phys. Plasmas 25, 100702 (2018).10.1063/1.5040095
|
[44] |
H. Vu, L. Yin, D. DuBois, B. Bezzerides, and E. Dodd, “Nonlinear spectral signatures and spatiotemporal behavior of stimulated Raman scattering from single laser speckles,” Phys. Rev. Lett. 95, 245003 (2005).10.1103/physrevlett.95.245003
|
[45] |
L. Yin, B. J. Albright, K. J. Bowers, W. Daughton, and H. A. Rose, “Saturation of backward stimulated scattering of a laser beam in the kinetic regime,” Phys. Rev. Lett. 99, 265004 (2007).10.1103/physrevlett.99.265004
|
[46] |
S. Brunner and E. J. Valeo, “Trapped-particle instability leading to bursting in stimulated Raman scattering simulations,” Phys. Rev. Lett. 93, 145003 (2004).10.1103/physrevlett.93.145003
|
[47] |
M. Mašek and K. Rohlena, “Stimulated Raman scattering in the presence of trapped particle instability,” Commun. Nonlinear Sci. Numer. Simul. 13, 125–129 (2008).10.1016/j.cnsns.2007.04.011
|
[48] |
L. Yin, B. J. Albright, H. A. Rose, K. J. Bowers, B. Bergen, D. S. Montgomery, J. L. Kline, and J. C. Fernández, “Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions,” Phys. Plasmas 16, 113101 (2009).10.1063/1.3250928
|
[49] |
L. Yin, B. J. Albright, H. A. Rose, K. J. Bowers, B. Bergen, and R. K. Kirkwood, “Self-organized bursts of coherent stimulated Raman scattering and hot electron transport in speckled laser plasma media,” Phys. Rev. Lett. 108, 245004 (2012).10.1103/physrevlett.108.245004
|
[50] |
L. Yin, B. J. Albright, H. A. Rose, D. S. Montgomery, J. L. Kline, R. K. Kirkwood, P. Michel, K. J. Bowers, and B. Bergen, “Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams,” Phys. Plasmas 20, 012702 (2013).10.1063/1.4774964
|
[51] |
D. J. Stark, L. Yin, B. J. Albright, A. Seaton, and R. F. Bird, “Forward and backward stimulated Raman scattering in multi-speckled beams: Density dependence and effects on cross-beam energy transfer,” Phys. Plasmas 28, 022702 (2021).10.1063/5.0022091
|
[52] |
D. J. Stark, L. Yin, T. B. Nguyen, G. Chen, L. Chacon, B. M. Haines, and L. Green, “Nonlinear models for coupling the effects of stimulated Raman scattering to inertial confinement fusion codes,” Phys. Plasmas 30, 042714 (2023).10.1063/5.0134881
|