Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Xiang Zhongtao, Yu Changhai, Qin Zhiyong, Jiao Xuhui, Cheng Jiahui, Zhou Qiaoxuan, Axi Gatie, Jie Jianghua, Huang Ya, Cai Jintan, Liu Jiansheng. Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime[J]. Matter and Radiation at Extremes, 2024, 9(3): 035201. doi: 10.1063/5.0189460
Citation: Xiang Zhongtao, Yu Changhai, Qin Zhiyong, Jiao Xuhui, Cheng Jiahui, Zhou Qiaoxuan, Axi Gatie, Jie Jianghua, Huang Ya, Cai Jintan, Liu Jiansheng. Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime[J]. Matter and Radiation at Extremes, 2024, 9(3): 035201. doi: 10.1063/5.0189460

Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime

doi: 10.1063/5.0189460
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: yuchanghai@shnu.edu.cn; b)Authors to whom correspondence should be addressed: phyzyqin@shnu.edu.cn; c)Authors to whom correspondence should be addressed: liujs@shnu.edu.cn
  • Received Date: 2023-11-29
  • Accepted Date: 2024-01-29
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120 mJ. In this scheme, the second bucket of the wakefield can have a much lower phase velocity at the steep plasma density down-ramp than the first bucket and can be exploited to implement longitudinal electron injection at a lower laser intensity, leading to the generation of bright electron beams with ultralow emittance together with low energy spread. Three-dimensional particle-in-cell simulations are carried out and demonstrate that high-quality electron beams with a peak energy of 50 MeV, ultralow emittance of ∼28 nm rad, energy spread of 1%, charge of 4.4 pC, and short duration less than 5 fs can be obtained within a 1-mm-long tailored plasma density, resulting in an ultrahigh six-dimensional brightness B6D,n of ∼2 × 1017 A/m2/0.1%. By changing the density parameters, tunable bright electron beams with peak energies ranging from 5 to 70 MeV, a small emittance of ≤0.1 mm mrad, and a low energy spread at a few-percent level can be obtained. These bright MeV-class electron beams have a variety of potential applications, for example, as ultrafast electron probes for diffraction and imaging, in laboratory astrophysics, in coherent radiation source generation, and as injectors for GeV particle accelerators.
  • loading
  • [1]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser–plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963
    [2]
    C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900
    [3]
    S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser–plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939
    [4]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
    [5]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229
    [6]
    A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Toth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, and W. P. Leemans, “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122, 084801 (2019).10.1103/physrevlett.122.084801
    [7]
    C. Aniculaesei, T. Ha, S. Yoffe, L. Labun, S. Milton, E. McCary, M. M. Spinks, H. J. Quevedo, O. Z. Labun, R. Sain, A. Hannasch, R. Zgadzaj, I. Pagano, J. A. Franco-Altamirano, M. L. Ringuette, E. Gaul, S. V. Luedtke, G. Tiwari, B. Ersfeld, E. Brunetti, H. Ruhl, T. Ditmire, S. Bruce, M. E. Donovan, M. C. Downer, D. A. Jaroszynski, and B. M. Hegelich, “The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator,” Matter Radiat. Extremes 9, 014001 (2023).10.1063/5.0161687
    [8]
    L. T. Ke, K. Feng, W. T. Wang, Z. Y. Qin, C. H. Yu, Y. Wu, Y. Chen, R. Qi, Z. J. Zhang, Y. Xu, X. J. Yang, Y. X. Leng, J. S. Liu, R. X. Li, and Z. Z. Xu, “Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma,” Phys. Rev. Lett. 126, 214801 (2021).10.1103/physrevlett.126.214801
    [9]
    W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, “High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control,” Phys. Rev. Lett. 117, 124801 (2016).10.1103/physrevlett.117.124801
    [10]
    Y. Glinec, J. Faure, V. Malka, T. Fuchs, H. Szymanowski, and U. Oelfke, “Radiotherapy with laser-plasma accelerators: Monte Carlo simulation of dose deposited by an experimental quasimonoenergetic electron beam,” Med. Phys. 33, 155–162 (2006).10.1118/1.2140115
    [11]
    V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4, 447–453 (2008).10.1038/nphys966
    [12]
    B. Kettle, E. Gerstmayr, M. J. V. Streeter, F. Albert, R. A. Baggott, N. Bourgeois, J. M. Cole, S. Dann, K. Falk, I. Gallardo Gonzalez, A. E. Hussein, N. Lemos, N. C. Lopes, O. Lundh, Y. Ma, S. J. Rose, C. Spindloe, D. R. Symes, M. Smid, A. G. R. Thomas, R. Watt, and S. P. D. Mangles, “Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source,” Phys. Rev. Lett. 123, 254801 (2019).10.1103/physrevlett.123.254801
    [13]
    B. Mahieu, N. Jourdain, K. Ta Phuoc, F. Dorchies, J. P. Goddet, A. Lifschitz, P. Renaudin, and L. Lecherbourg, “Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source,” Nat. Commun. 9, 3276 (2018).10.1038/s41467-018-05791-4
    [14]
    W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, and Z. Xu, “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x
    [15]
    M. Labat, J. C. Cabadağ, A. Ghaith, A. Irman, A. Berlioux, P. Berteaud, F. Blache, S. Bock, F. Bouvet, F. Briquez, Y.-Y. Chang, S. Corde, A. Debus, C. De Oliveira, J.-P. Duval, Y. Dietrich, M. El Ajjouri, C. Eisenmann, J. Gautier, R. Gebhardt, S. Grams, U. Helbig, C. Herbeaux, N. Hubert, C. Kitegi, O. Kononenko, M. Kuntzsch, M. LaBerge, S. Lê, B. Leluan, A. Loulergue, V. Malka, F. Marteau, M. H. N. Guyen, D. Oumbarek-Espinos, R. Pausch, D. Pereira, T. Püschel, J.-P. Ricaud, P. Rommeluere, E. Roussel, P. Rousseau, S. Schöbel, M. Sebdaoui, K. Steiniger, K. Tavakoli, C. Thaury, P. Ufer, M. Valléau, M. Vandenberghe, J. Vétéran, U. Schramm, and M.-E. Couprie, “Seeded free-electron laser driven by a compact laser plasma accelerator,” Nat. Photonics 17, 150–156 (2022).10.1038/s41566-022-01104-w
    [16]
    K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308–311 (2012).10.1038/nphoton.2012.82
    [17]
    G. Sarri, D. J. Corvan, W. Schumaker, J. M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. Mangles, Z. Najmudin, D. Symes, A. G. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).10.1103/physrevlett.113.224801
    [18]
    C. Yu, R. Qi, W. Wang, J. Liu, W. Li, C. Wang, Z. Zhang, J. Liu, Z. Qin, M. Fang, K. Feng, Y. Wu, Y. Tian, Y. Xu, F. Wu, Y. Leng, X. Weng, J. Wang, F. Wei, Y. Yi, Z. Song, R. Li, and Z. Xu, “Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering,” Sci. Rep. 6, 29518 (2016).10.1038/srep29518
    [19]
    N. A. Mikheytsev and A. V. Korzhimanov, “Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas,” Matter Radiat. Extremes 8, 024401 (2023).10.1063/5.0116660
    [20]
    Y. Zhao, H. Lu, C. Zhou, and J. Zhu, “Overcritical electron acceleration and betatron radiation in the bubble-like structure formed by re-injected electrons in a tailored transverse plasma,” Matter Radiat. Extremes 8, 014403 (2023).10.1063/5.0121558
    [21]
    C. Yu, J. Liu, W. Wang, W. Li, R. Qi, Z. Zhang, Z. Qin, J. Liu, M. Fang, K. Feng, Y. Wu, L. Ke, Y. Chen, C. Wang, Y. Xu, Y. Leng, C. Xia, R. Li, and Z. Xu, “Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front,” Appl. Phys. Lett. 112, 133503 (2018).10.1063/1.5019406
    [22]
    M. Kozlova, I. Andriyash, J. Gautier, S. Sebban, S. Smartsev, N. Jourdain, U. Chaulagain, Y. Azamoum, A. Tafzi, J.-P. Goddet, K. Oubrerie, C. Thaury, A. Rousse, and K. Ta Phuoc, “Hard X rays from laser-wakefield accelerators in density tailored plasmas,” Phys. Rev. X 10, 011061 (2020).10.1103/physrevx.10.011061
    [23]
    R. Rakowski, P. Zhang, K. Jensen, B. Kettle, T. Kawamoto, S. Banerjee, C. Fruhling, G. Golovin, D. Haden, M. S. Robinson, D. Umstadter, B. A. Shadwick, and M. Fuchs, “Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation,” Sci. Rep. 12, 10855 (2022).10.1038/s41598-022-14748-z
    [24]
    Z. H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).10.1088/1367-2630/15/5/053016
    [25]
    D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).10.1038/nphoton.2017.46
    [26]
    F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with <10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).10.1364/ol.42.000215
    [27]
    [28]
    A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).10.1103/physrevlett.115.194802
    [29]
    A. Benedetti, M. Tamburini, and C. H. Keitel, “Giant collimated gamma-ray flashes,” Nat. Photonics 12, 319–323 (2018).10.1038/s41566-018-0139-y
    [30]
    M. Yamada, L. J. Chen, J. Yoo, S. Wang, W. Fox, J. Jara-Almonte, H. Ji, W. Daughton, A. Le, J. Burch, B. Giles, M. Hesse, T. Moore, and R. Torbert, “The two-fluid dynamics and energetics of the asymmetric magnetic reconnection in laboratory and space plasmas,” Nat. Commun. 9, 5223 (2018).10.1038/s41467-018-07680-2
    [31]
    A. F. Lifschitz and V. Malka, “Optical phase effects in electron wakefield acceleration using few-cycle laser pulses,” New J. Phys. 14, 053045 (2012).10.1088/1367-2630/14/5/053045
    [32]
    B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).10.1088/1367-2630/16/2/023023
    [33]
    D. Gustas, D. Guénot, A. Vernier, S. Dutt, F. Böhle, R. Lopez-Martens, A. Lifschitz, and J. Faure, “High-charge relativistic electron bunches from a kHz laser-plasma accelerator,” Phys. Rev. Accel. Beams 21, 013401 (2018).10.1103/physrevaccelbeams.21.013401
    [34]
    F. Salehi, M. Le, L. Railing, M. Kolesik, and H. M. Milchberg, “Laser-accelerated, low-divergence 15-MeV quasimonoenergetic electron bunches at 1 kHz,” Phys. Rev. X 11, 021055 (2020).10.1103/physrevx.11.021055
    [35]
    L. Rovige, J. Huijts, I. Andriyash, A. Vernier, V. Tomkus, V. Girdauskas, G. Raciukaitis, J. Dudutis, V. Stankevic, P. Gecys, M. Ouille, Z. Cheng, R. Lopez-Martens, and J. Faure, “Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator,” Phys. Rev. Accel. Beams 23, 093401 (2020).10.1103/physrevaccelbeams.23.093401
    [36]
    S. Corde, C. Thaury, A. Lifschitz, G. Lambert, K. Ta Phuoc, X. Davoine, R. Lehe, D. Douillet, A. Rousse, and V. Malka, “Observation of longitudinal and transverse self-injections in laser-plasma accelerators,” Nat. Commun. 4, 1501 (2013).10.1038/ncomms2528
    [37]
    Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).10.1063/1.4792057
    [38]
    J. Faure, B. van der Geer, B. Beaurepaire, G. Gallé, A. Vernier, and A. Lifschitz, “Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction,” Phys. Rev. Accel. Beams 19, 021302 (2016).10.1103/physrevaccelbeams.19.021302
    [39]
    H. P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J. G. Gallacher, E. Brunetti, R. P. Shanks, S. M. Wiggins, and D. A. Jaroszynski, “A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator,” Nat. Phys. 4, 130–133 (2007).10.1038/nphys811
    [40]
    M. Fuchs, R. Weingartner, A. Popp, Z. Major, S. Becker, J. Osterhoff, I. Cortrie, B. Zeitler, R. Hörlein, G. D. Tsakiris, U. Schramm, T. P. Rowlands-Rees, S. M. Hooker, D. Habs, F. Krausz, S. Karsch, and F. Grüner, “Laser-driven soft-X-ray undulator source,” Nat. Phys. 5, 826–829 (2009).10.1038/nphys1404
    [41]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1–48 (2013).10.1103/revmodphys.85.1
    [42]
    E. Adli, A. Ahuja, O. Apsimon, R. Apsimon, A. M. Bachmann, D. Barrientos, F. Batsch, J. Bauche, V. K. Berglyd Olsen, M. Bernardini, T. Bohl, C. Bracco, F. Braunmuller, G. Burt, B. Buttenschon, A. Caldwell, M. Cascella, J. Chappell, E. Chevallay, M. Chung, D. Cooke, H. Damerau, L. Deacon, L. H. Deubner, A. Dexter, S. Doebert, J. Farmer, V. N. Fedosseev, R. Fiorito, R. A. Fonseca, F. Friebel, L. Garolfi, S. Gessner, I. Gorgisyan, A. A. Gorn, E. Granados, O. Grulke, E. Gschwendtner, J. Hansen, A. Helm, J. R. Henderson, M. Huther, M. Ibison, L. Jensen, S. Jolly, F. Keeble, S. Y. Kim, F. Kraus, Y. Li, S. Liu, N. Lopes, K. V. Lotov, L. Maricalva Brun, M. Martyanov, S. Mazzoni, D. Medina Godoy, V. A. Minakov, J. Mitchell, J. C. Molendijk, J. T. Moody, M. Moreira, P. Muggli, E. Oz, C. Pasquino, A. Pardons, F. Pena Asmus, K. Pepitone, A. Perera, A. Petrenko, S. Pitman, A. Pukhov, S. Rey, K. Rieger, H. Ruhl, J. S. Schmidt, I. A. Shalimova, P. Sherwood, L. O. Silva, L. Soby, A. P. Sosedkin, R. Speroni, R. I. Spitsyn, P. V. Tuev, M. Turner, F. Velotti, L. Verra, V. A. Verzilov, J. Vieira, C. P. Welsch, B. Williamson, M. Wing, B. Woolley, and G. Xia, “Acceleration of electrons in the plasma wakefield of a proton bunch,” Nature 561, 363–367 (2018).10.1038/s41586-018-0485-4
    [43]
    A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz, “Shock-front injector for high-quality laser-plasma acceleration,” Phys. Rev. Lett. 110, 185006 (2013).10.1103/physrevlett.110.185006
    [44]
    J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, “Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel,” Phys. Plasmas 17, 083107 (2010).10.1063/1.3469581
    [45]
    L. T. Ke, C. h. Yu, K. Feng, Z. Y. Qin, K. N. Jiang, H. Wang, S. X. Luan, X. J. Yang, Y. Xu, Y. X. Leng, W. T. Wang, J. S. Liu, and R. X. Li, “Optimization of electron beams based on plasma-density modulation in a laser-driven wakefield accelerator,” Appl. Sci. 11, 2560 (2021).10.3390/app11062560
    [46]
    C. S. Hue, Y. Wan, E. Y. Levine, and V. Malka, “Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators,” Matter Radiat. Extremes 8, 024401 (2023).10.1063/5.0126293
    [47]
    G. Fubiani, E. Esarey, C. B. Schroeder, and W. P. Leemans, “Improvement of electron beam quality in optical injection schemes using negative plasma density gradients,” Phys. Rev. E 73, 026402 (2006).10.1103/physreve.73.026402
    [48]
    R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, “A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm,” Comput. Phys. Commun. 203, 66–82 (2016).10.1016/j.cpc.2016.02.007
    [49]
    N. Bourgeois, J. Cowley, and S. M. Hooker, “Two-pulse ionization injection into quasilinear laser wakefields,” Phys. Rev. Lett. 111, 155004 (2013).10.1103/physrevlett.111.155004
    [50]
    E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995).10.1063/1.871358
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (151) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return