Citation: | Xu Ya, Zheng Lu, Zhang Yunkun, Zhang Zhuangfei, Wang QianQian, Zhang Yuewen, Chen Liangchao, Fang Chao, Wan Biao, Gou Huiyang. Strong electron correlation-induced Mott-insulating electrides of Ae5X3 (Ae = Ca, Sr, and Ba; X = As and Sb)[J]. Matter and Radiation at Extremes, 2024, 9(3): 037402. doi: 10.1063/5.0187372 |
[1] |
H. Hosono and M. Kitano, “Advances in materials and applications of inorganic electrides,” Chem. Rev. 121, 3121–3185 (2021).10.1021/acs.chemrev.0c01071
|
[2] |
J. Wu, J. Li, Y. Gong, M. Kitano, T. Inoshita, and H. Hosono, “Intermetallic electride catalyst as a platform for ammonia synthesis,” Angew. Chem., Int. Ed. 58, 825–829 (2019).10.1002/anie.201812131
|
[3] |
S. Zhao, E. Kan, and Z. Li, “Electride: From computational characterization to theoretical design,” WIREs Comput. Mol. Sci. 6, 430–440 (2016).10.1002/wcms.1258
|
[4] |
X. Zhang, W. Meng, Y. Liu, X. Dai, G. Liu, and L. Kou, “Magnetic electrides: High-throughput material screening, intriguing properties, and applications,” J. Am. Chem. Soc. 145, 5523–5535 (2023).10.1021/jacs.3c00284
|
[5] |
J. Hou, K. Tu, and Z. Chen, “Two-dimensional Y2C electride: A promising anode material for Na-ion batteries,” J. Phys. Chem. C 120, 18473–18478 (2016).10.1021/acs.jpcc.6b06087
|
[6] |
L. Zhang, H. Y. Geng, and Q. Wu, “Prediction of anomalous LA-TA splitting in electrides,” Matter Radiat. Extremes 6, 038403 (2021).10.1063/5.0043276
|
[7] |
M. Y. Redko, J. E. Jackson, R. H. Huang, and J. L. Dye, “Design and synthesis of a thermally stable organic electride,” J. Am. Chem. Soc. 127, 12416–12422 (2005).10.1021/ja053216f
|
[8] |
S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, “High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e−),” Science 301, 626–629 (2003).10.1126/science.1083842.
|
[9] |
X. Zhang and G. Yang, “Recent advances and applications of inorganic electrides,” J. Phys. Chem. Lett. 11, 3841–3852 (2020).10.1021/acs.jpclett.0c00671
|
[10] |
K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, “Dicalcium nitride as a two-dimensional electride with an anionic electron layer,” Nature 494, 336–340 (2013).10.1038/nature11812
|
[11] |
X. Zhang, Z. Xiao, H. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, and H. Hosono, “Two-dimensional transition-metal electride Y2C,” Chem. Mater. 26, 6638–6643 (2014).10.1021/cm503512h
|
[12] |
Y. Zhang, Z. Xiao, T. Kamiya, and H. Hosono, “Electron confinement in channel spaces for one-dimensional electride,” J. Phys. Chem. Lett. 6, 4966–4971 (2015).10.1021/acs.jpclett.5b02283
|
[13] |
Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, and H. Hosono, “Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis,” J. Am. Chem. Soc. 138, 3970–3973 (2016).10.1021/jacs.6b00124
|
[14] |
T. Tada, J. Wang, and H. Hosono, “First principles evolutionary search for new electrides along the dimensionality of anionic electrons,” J. Comput. Chem. Jpn. 16, 135–138 (2017).10.2477/jccj.2017-0067
|
[15] |
Z. Guo, X. Li, A. Bergara, S. Ding, X. Zhang, and G. Yang, “Pressure-induced evolution of stoichiometries and electronic structures of host–guest Na–B compounds,” Matter Radiat. Extremes 8, 068401 (2023).10.1063/5.0155005
|
[16] |
M.-S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47, 1311–1317 (2014).10.1021/ar4002922
|
[17] |
Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
|
[18] |
Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, F. Li, H. Li, D. Li, and T. Cui, “Proposed superconducting electride Li6C by sp-hybridized cage states at moderate pressures,” Phys. Rev. Lett. 127, 157002 (2021).10.1103/physrevlett.127.157002
|
[19] |
X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, V. L. Deringer, R. Dronskowski, X.-F. Zhou, V. B. Prakapenka, Z. Konôpková, I. A. Popov, A. I. Boldyrev, and H.-T. Wang, “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
|
[20] |
B. Wan, Y. Lu, Z. Xiao, Y. Muraba, J. Kim, D. Huang, L. Wu, H. Gou, J. Zhang, F. Gao, H. Mao, and H. Hosono, “Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification,” npj Comput. Mater. 4, 77 (2018).10.1038/s41524-018-0136-1
|
[21] |
L. M. McRae, R. C. Radomsky, J. T. Pawlik, D. L. Druffel, J. D. Sundberg, M. G. Lanetti, C. L. Donley, K. L. White, and S. C. Warren, “Sc2C, a 2D semiconducting electride,” J. Am. Chem. Soc. 144, 10862–10869 (2022).10.1021/jacs.2c03024
|
[22] |
H. Tang, B. Wan, B. Gao, Y. Muraba, Q. Qin, B. Yan, P. Chen, Q. Hu, D. Zhang, L. Wu, M. Wang, H. Xiao, H. Gou, F. Gao, H. Mao, and H. Hosono, “Metal-to-semiconductor transition and electronic dimensionality reduction of Ca2N electride under pressure,” Adv. Sci. 5, 1800666 (2018).10.1002/advs.201800666
|
[23] |
T. Matsuoka and K. Shimizu, “Direct observation of a pressure-induced metal-to-semiconductor transition in lithium,” Nature 458, 186–189 (2009).10.1038/nature07827
|
[24] |
D.-K. Lee, L. Kogel, S. G. Ebbinghaus, I. Valov, H.-D. Wiemhoefer, M. Lerch, and J. Janek, “Defect chemistry of the cage compound, Ca12Al14O33−δ—Understanding the route from a solid electrolyte to a semiconductor and electride,” Phys. Chem. Chem. Phys. 11, 3105–3114 (2009).10.1039/b818474g
|
[25] |
S.-W. Kim, S. Matsuishi, M. Miyakawa, K. Hayashi, M. Hirano, and H. Hosono, “Fabrication of room temperature-stable 12CaO·7Al2O3 electride: A review,” J. Mater. Sci.: Mater. Electron. 18, 5–14 (2007).10.1007/s10854-007-9183-y
|
[26] |
S. Y. Lee, J.-Y. Hwang, J. Park, C. N. Nandadasa, Y. Kim, J. Bang, K. Lee, K. H. Lee, Y. Zhang, Y. Ma, H. Hosono, Y. H. Lee, S.-G. Kim, and S. W. Kim, “Ferromagnetic quasi-atomic electrons in two-dimensional electride,” Nat. Commun. 11, 1526 (2020).10.1038/s41467-020-15253-5
|
[27] |
X. Sui, J. Wang, C. Yam, and B. Huang, “Two-dimensional magnetic anionic electrons in electrides: Generation and manipulation,” Nano Lett. 21, 3813–3819 (2021).10.1021/acs.nanolett.1c00172
|
[28] |
J.-Q. Yan, M. Ochi, H. B. Cao, B. Saparov, J.-G. Cheng, Y. Uwatoko, R. Arita, B. C. Sales, and D. G. Mandrus, “Magnetic order of Nd5Pb3single crystals,” J. Phys.: Condens. Matter. 30, 135801 (2018).10.1088/1361-648x/aaaf3e
|
[29] |
G. Trimarchi, Z. Wang, and A. Zunger, “Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO,” Phys. Rev. B 97, 035107 (2018).10.1103/physrevb.97.035107
|
[30] |
J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, “Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3,” Nat. Commun. 1, 89 (2010).10.1038/ncomms1084
|
[31] |
J. Wang, K. Hanzawa, H. Hiramatsu, J. Kim, N. Umezawa, K. Iwanaka, T. Tada, and H. Hosono, “Exploration of stable strontium phosphide-based electrides: Theoretical structure prediction and experimental validation,” J. Am. Chem. Soc. 139, 15668–15680 (2017).10.1021/jacs.7b06279
|
[32] |
Y. Lu, J. Wang, J. Li, J. Wu, S. Kanno, T. Tada, and H. Hosono, “Realization of Mott-insulating electrides in dimorphic Yb5Sb3,” Phys. Rev. B 98, 125128 (2018).10.1103/physrevb.98.125128
|
[33] |
Y. Zhang, B. Wang, Z. Xiao, Y. Lu, T. Kamiya, Y. Uwatoko, H. Kageyama, and H. Hosono, “Electride and superconductivity behaviors in Mn5Si3-type intermetallics,” npj Quantum Mater. 2, 45 (2017).10.1038/s41535-017-0053-4
|
[34] |
Q. Zhu, T. Frolov, and K. Choudhary, “Computational discovery of inorganic electrides from an automated screening,” Matter 1, 1293–1303 (2019).10.1016/j.matt.2019.06.017
|
[35] |
L. A. Burton, F. Ricci, W. Chen, G.-M. Rignanese, and G. Hautier, “High-throughput identification of electrides from all known inorganic materials,” Chem. Mater. 30, 7521–7526 (2018).10.1021/acs.chemmater.8b02526
|
[36] |
K. Li, Y. Gong, J. Wang, and H. Hosono, “Electron-deficient-type electride Ca5Pb3: Extension of electride chemical space,” J. Am. Chem. Soc. 143, 8821–8828 (2021).10.1021/jacs.1c03278
|
[37] |
K. Li, V. A. Blatov, and J. Wang, “Discovery of electrides in electron-rich non-electride materials via energy modification of interstitial electrons,” Adv. Funct. Mater. 32, 2112198 (2022).10.1002/adfm.202112198
|
[38] |
R. Takagi, H. Gangi, K. Miyagawa, B. Zhou, A. Kobayashi, and K. Kanoda, “Spin-gapped Mott insulator with the dimeric arrangement of twisted molecules Zn(tmdt)2,” Phys. Rev. B 95, 224427 (2017).10.1103/physrevb.95.224427
|
[39] |
G. Khaliullin, “Excitonic magnetism in Van Vleck–type d4 Mott insulators,” Phys. Rev. Lett. 111, 197201 (2013).10.1103/physrevlett.111.197201
|
[40] |
D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, “Strong electronic correlations in interstitial magnetic centers of zero-dimensional electride β–Yb5Sb3,” Phys. Rev. B 103, 235126 (2021).10.1103/physrevb.103.235126
|
[41] |
A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, “New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 364–369 (2002).10.1107/s0108768102006948
|
[42] |
F. Karsai, P. Tiwald, R. Laskowski, F. Tran, D. Koller, S. Gräfe, J. Burgdörfer, L. Wirtz, and P. Blaha, “F center in lithium fluoride revisited: Comparison of solid-state physics and quantum-chemistry approaches,” Phys. Rev. B 89, 125429 (2014).10.1103/physrevb.89.125429
|
[43] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
|
[44] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
|
[45] |
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
|
[46] |
H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
|
[47] |
A. Paramekanti, D. D. Maharaj, and B. D. Gaulin, “Octupolar order in d-orbital Mott insulators,” Phys. Rev. B 101, 054439 (2020).10.1103/physrevb.101.054439
|
[48] |
S.-J. Song, Y.-Q. Lin, B.-Z. Li, S.-Q. Wu, Q.-Q. Zhu, Z. Ren, and G.-H. Cao, “Tetragonal polymorph of BaFe2S2O as an antiferromagnetic Mott insulator,” Phys. Rev. Mater. 6, 055002 (2022).10.1103/physrevmaterials.6.055002
|
[49] |
D. I. Badrtdinov and S. A. Nikolaev, “Localised magnetism in 2D electrides,” J. Mater. Chem. C 8, 7858–7865 (2020).10.1039/d0tc01223h
|
[50] |
X. Huang, L. Duan, Z. Zhang, C. Fang, L. Chen, Q. Wang, Y. Zhang, W. Shen, X. Jia, L. Wu, and B. Wan, “Uncovering 0D and 1D electrides with low work function in a Sc–P system,” J. Phys. Chem. C 126, 20710–20716 (2022).10.1021/acs.jpcc.2c07066
|
[51] |
B. Wan, S. Xu, X. Yuan, H. Tang, D. Huang, W. Zhou, L. Wu, J. Zhang, and H. Gou, “Diversities of stoichiometry and electrical conductivity in sodium sulfides,” J. Mater. Chem. A 7, 16472–16478 (2019).10.1039/c9ta05907e
|
[52] |
W. M. Hurng and J. D. Corbett, “Alkaline-earth-metal antimonides and bismuthides with the A5Pn3 stoichiometry. Interstitial and other Zintl phases formed on their reactions with halogen or sulfur,” Chem. Mater. 1, 311–319 (1989).10.1021/cm00003a008
|
[53] |
G. Bruzzone, E. Franceschi, and F. Merlo, “M5X3 intermediate phases formed by Ca, Sr and Ba,” J. Less-Common Met. 60, 59–63 (1978).10.1016/0022-5088(78)90089-9
|
[54] |
M. Martinez-Ripoll and G. Brauer, “The crystal structure of Ca5Sb3,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 30, 1083–1087 (1974).10.1107/s0567740874004304
|
[55] |
M. Martinez-Ripoll, A. Haase, and G. Brauer, “The crystal structure of Ca5Bi3,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 30, 2004–2006 (1974).10.1107/s0567740874006273
|
[56] | |
[57] |
A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92, 5397–5403 (1990).10.1063/1.458517
|
[58] |
Q. Chen, X. Zheng, P. Jiang, Y.-H. Zhou, L. Zhang, and Z. Zeng, “Electric field induced tunable half-metallicity in an A-type antiferromagnetic bilayer LaBr2,” Phys. Rev. B 106, 245423 (2022).10.1103/physrevb.106.245423
|
[59] |
Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, “Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications,” Light: Sci. Appl. 9, 190 (2020).10.1038/s41377-020-00421-5
|
[60] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).10.1126/science.aac9439
|
[61] |
H. J. M. Jönsson, M. Ekholm, M. Bykov, L. Dubrovinsky, S. Van Smaalen, and I. A. Abrikosov, “Inverse pressure-induced Mott transition in TiPO4,” Phys. Rev. B 99, 245132 (2019).10.1103/physrevb.99.245132
|
[62] |
T. Inoshita, S. Jeong, N. Hamada, and H. Hosono, “Exploration for two-dimensional electrides via database screening and ab initio calculation,” Phys. Rev. X. 4, 031023 (2014).10.1103/physrevx.4.031023
|
[63] |
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, and H. Hosono, “Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis,” Nat. Commun. 6, 6731 (2015).10.1038/ncomms7731
|
![]() |
![]() |