Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Xu Ya, Zheng Lu, Zhang Yunkun, Zhang Zhuangfei, Wang QianQian, Zhang Yuewen, Chen Liangchao, Fang Chao, Wan Biao, Gou Huiyang. Strong electron correlation-induced Mott-insulating electrides of Ae5X3 (Ae = Ca, Sr, and Ba; X = As and Sb)[J]. Matter and Radiation at Extremes, 2024, 9(3): 037402. doi: 10.1063/5.0187372
Citation: Xu Ya, Zheng Lu, Zhang Yunkun, Zhang Zhuangfei, Wang QianQian, Zhang Yuewen, Chen Liangchao, Fang Chao, Wan Biao, Gou Huiyang. Strong electron correlation-induced Mott-insulating electrides of Ae5X3 (Ae = Ca, Sr, and Ba; X = As and Sb)[J]. Matter and Radiation at Extremes, 2024, 9(3): 037402. doi: 10.1063/5.0187372

Strong electron correlation-induced Mott-insulating electrides of Ae5X3 (Ae = Ca, Sr, and Ba; X = As and Sb)

doi: 10.1063/5.0187372
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: biaowan@zzu.edu.cn
  • Received Date: 2023-11-13
  • Accepted Date: 2024-02-23
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • The presence of interstitial electrons in electrides endows them with interesting attributes, such as low work function, high carrier concentration, and unique magnetic properties. Thorough knowledge and understanding of electrides are thus of both scientific and technological significance. Here, we employ first-principles calculations to investigate Mott-insulating Ae5X3 (Ae = Ca, Sr, and Ba; X = As and Sb) electrides with Mn5Si3-type structure, in which half-filled interstitial electrons serve as ions and are spin-polarized. The Mott-insulating property is induced by strong electron correlation between the nearest interstitial electrons, resulting in spin splitting and a separation between occupied and unoccupied states. The half-filled antiferromagnetic configuration and localization of the interstitial electrons are critical for the Mott-insulating properties of these materials. Compared with that in intermetallic electrides, the orbital hybridization between the half-filled interstitial electrons and the surrounding atoms is weak, leading to highly localized magnetic centers and pronounced correlation effects. Therefore, the Mott-insulating electrides Ae5X3 have very large indirect bandgaps (∼0.30 eV). In addition, high pressure is found to strengthen the strong correlation effects and enlarge the bandgap. The present results provide a deeper understanding of the formation mechanism of Mott-insulating electrides and provide guidance for the search for new strongly correlated electrides.
  • loading
  • [1]
    H. Hosono and M. Kitano, “Advances in materials and applications of inorganic electrides,” Chem. Rev. 121, 3121–3185 (2021).10.1021/acs.chemrev.0c01071
    [2]
    J. Wu, J. Li, Y. Gong, M. Kitano, T. Inoshita, and H. Hosono, “Intermetallic electride catalyst as a platform for ammonia synthesis,” Angew. Chem., Int. Ed. 58, 825–829 (2019).10.1002/anie.201812131
    [3]
    S. Zhao, E. Kan, and Z. Li, “Electride: From computational characterization to theoretical design,” WIREs Comput. Mol. Sci. 6, 430–440 (2016).10.1002/wcms.1258
    [4]
    X. Zhang, W. Meng, Y. Liu, X. Dai, G. Liu, and L. Kou, “Magnetic electrides: High-throughput material screening, intriguing properties, and applications,” J. Am. Chem. Soc. 145, 5523–5535 (2023).10.1021/jacs.3c00284
    [5]
    J. Hou, K. Tu, and Z. Chen, “Two-dimensional Y2C electride: A promising anode material for Na-ion batteries,” J. Phys. Chem. C 120, 18473–18478 (2016).10.1021/acs.jpcc.6b06087
    [6]
    L. Zhang, H. Y. Geng, and Q. Wu, “Prediction of anomalous LA-TA splitting in electrides,” Matter Radiat. Extremes 6, 038403 (2021).10.1063/5.0043276
    [7]
    M. Y. Redko, J. E. Jackson, R. H. Huang, and J. L. Dye, “Design and synthesis of a thermally stable organic electride,” J. Am. Chem. Soc. 127, 12416–12422 (2005).10.1021/ja053216f
    [8]
    S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, “High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e−),” Science 301, 626–629 (2003).10.1126/science.1083842.
    [9]
    X. Zhang and G. Yang, “Recent advances and applications of inorganic electrides,” J. Phys. Chem. Lett. 11, 3841–3852 (2020).10.1021/acs.jpclett.0c00671
    [10]
    K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, “Dicalcium nitride as a two-dimensional electride with an anionic electron layer,” Nature 494, 336–340 (2013).10.1038/nature11812
    [11]
    X. Zhang, Z. Xiao, H. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, and H. Hosono, “Two-dimensional transition-metal electride Y2C,” Chem. Mater. 26, 6638–6643 (2014).10.1021/cm503512h
    [12]
    Y. Zhang, Z. Xiao, T. Kamiya, and H. Hosono, “Electron confinement in channel spaces for one-dimensional electride,” J. Phys. Chem. Lett. 6, 4966–4971 (2015).10.1021/acs.jpclett.5b02283
    [13]
    Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, and H. Hosono, “Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis,” J. Am. Chem. Soc. 138, 3970–3973 (2016).10.1021/jacs.6b00124
    [14]
    T. Tada, J. Wang, and H. Hosono, “First principles evolutionary search for new electrides along the dimensionality of anionic electrons,” J. Comput. Chem. Jpn. 16, 135–138 (2017).10.2477/jccj.2017-0067
    [15]
    Z. Guo, X. Li, A. Bergara, S. Ding, X. Zhang, and G. Yang, “Pressure-induced evolution of stoichiometries and electronic structures of host–guest Na–B compounds,” Matter Radiat. Extremes 8, 068401 (2023).10.1063/5.0155005
    [16]
    M.-S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47, 1311–1317 (2014).10.1021/ar4002922
    [17]
    Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
    [18]
    Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, F. Li, H. Li, D. Li, and T. Cui, “Proposed superconducting electride Li6C by sp-hybridized cage states at moderate pressures,” Phys. Rev. Lett. 127, 157002 (2021).10.1103/physrevlett.127.157002
    [19]
    X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, V. L. Deringer, R. Dronskowski, X.-F. Zhou, V. B. Prakapenka, Z. Konôpková, I. A. Popov, A. I. Boldyrev, and H.-T. Wang, “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
    [20]
    B. Wan, Y. Lu, Z. Xiao, Y. Muraba, J. Kim, D. Huang, L. Wu, H. Gou, J. Zhang, F. Gao, H. Mao, and H. Hosono, “Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification,” npj Comput. Mater. 4, 77 (2018).10.1038/s41524-018-0136-1
    [21]
    L. M. McRae, R. C. Radomsky, J. T. Pawlik, D. L. Druffel, J. D. Sundberg, M. G. Lanetti, C. L. Donley, K. L. White, and S. C. Warren, “Sc2C, a 2D semiconducting electride,” J. Am. Chem. Soc. 144, 10862–10869 (2022).10.1021/jacs.2c03024
    [22]
    H. Tang, B. Wan, B. Gao, Y. Muraba, Q. Qin, B. Yan, P. Chen, Q. Hu, D. Zhang, L. Wu, M. Wang, H. Xiao, H. Gou, F. Gao, H. Mao, and H. Hosono, “Metal-to-semiconductor transition and electronic dimensionality reduction of Ca2N electride under pressure,” Adv. Sci. 5, 1800666 (2018).10.1002/advs.201800666
    [23]
    T. Matsuoka and K. Shimizu, “Direct observation of a pressure-induced metal-to-semiconductor transition in lithium,” Nature 458, 186–189 (2009).10.1038/nature07827
    [24]
    D.-K. Lee, L. Kogel, S. G. Ebbinghaus, I. Valov, H.-D. Wiemhoefer, M. Lerch, and J. Janek, “Defect chemistry of the cage compound, Ca12Al14O33−δ—Understanding the route from a solid electrolyte to a semiconductor and electride,” Phys. Chem. Chem. Phys. 11, 3105–3114 (2009).10.1039/b818474g
    [25]
    S.-W. Kim, S. Matsuishi, M. Miyakawa, K. Hayashi, M. Hirano, and H. Hosono, “Fabrication of room temperature-stable 12CaO·7Al2O3 electride: A review,” J. Mater. Sci.: Mater. Electron. 18, 5–14 (2007).10.1007/s10854-007-9183-y
    [26]
    S. Y. Lee, J.-Y. Hwang, J. Park, C. N. Nandadasa, Y. Kim, J. Bang, K. Lee, K. H. Lee, Y. Zhang, Y. Ma, H. Hosono, Y. H. Lee, S.-G. Kim, and S. W. Kim, “Ferromagnetic quasi-atomic electrons in two-dimensional electride,” Nat. Commun. 11, 1526 (2020).10.1038/s41467-020-15253-5
    [27]
    X. Sui, J. Wang, C. Yam, and B. Huang, “Two-dimensional magnetic anionic electrons in electrides: Generation and manipulation,” Nano Lett. 21, 3813–3819 (2021).10.1021/acs.nanolett.1c00172
    [28]
    J.-Q. Yan, M. Ochi, H. B. Cao, B. Saparov, J.-G. Cheng, Y. Uwatoko, R. Arita, B. C. Sales, and D. G. Mandrus, “Magnetic order of Nd5Pb3single crystals,” J. Phys.: Condens. Matter. 30, 135801 (2018).10.1088/1361-648x/aaaf3e
    [29]
    G. Trimarchi, Z. Wang, and A. Zunger, “Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO,” Phys. Rev. B 97, 035107 (2018).10.1103/physrevb.97.035107
    [30]
    J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, “Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3,” Nat. Commun. 1, 89 (2010).10.1038/ncomms1084
    [31]
    J. Wang, K. Hanzawa, H. Hiramatsu, J. Kim, N. Umezawa, K. Iwanaka, T. Tada, and H. Hosono, “Exploration of stable strontium phosphide-based electrides: Theoretical structure prediction and experimental validation,” J. Am. Chem. Soc. 139, 15668–15680 (2017).10.1021/jacs.7b06279
    [32]
    Y. Lu, J. Wang, J. Li, J. Wu, S. Kanno, T. Tada, and H. Hosono, “Realization of Mott-insulating electrides in dimorphic Yb5Sb3,” Phys. Rev. B 98, 125128 (2018).10.1103/physrevb.98.125128
    [33]
    Y. Zhang, B. Wang, Z. Xiao, Y. Lu, T. Kamiya, Y. Uwatoko, H. Kageyama, and H. Hosono, “Electride and superconductivity behaviors in Mn5Si3-type intermetallics,” npj Quantum Mater. 2, 45 (2017).10.1038/s41535-017-0053-4
    [34]
    Q. Zhu, T. Frolov, and K. Choudhary, “Computational discovery of inorganic electrides from an automated screening,” Matter 1, 1293–1303 (2019).10.1016/j.matt.2019.06.017
    [35]
    L. A. Burton, F. Ricci, W. Chen, G.-M. Rignanese, and G. Hautier, “High-throughput identification of electrides from all known inorganic materials,” Chem. Mater. 30, 7521–7526 (2018).10.1021/acs.chemmater.8b02526
    [36]
    K. Li, Y. Gong, J. Wang, and H. Hosono, “Electron-deficient-type electride Ca5Pb3: Extension of electride chemical space,” J. Am. Chem. Soc. 143, 8821–8828 (2021).10.1021/jacs.1c03278
    [37]
    K. Li, V. A. Blatov, and J. Wang, “Discovery of electrides in electron-rich non-electride materials via energy modification of interstitial electrons,” Adv. Funct. Mater. 32, 2112198 (2022).10.1002/adfm.202112198
    [38]
    R. Takagi, H. Gangi, K. Miyagawa, B. Zhou, A. Kobayashi, and K. Kanoda, “Spin-gapped Mott insulator with the dimeric arrangement of twisted molecules Zn(tmdt)2,” Phys. Rev. B 95, 224427 (2017).10.1103/physrevb.95.224427
    [39]
    G. Khaliullin, “Excitonic magnetism in Van Vleck–type d4 Mott insulators,” Phys. Rev. Lett. 111, 197201 (2013).10.1103/physrevlett.111.197201
    [40]
    D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, “Strong electronic correlations in interstitial magnetic centers of zero-dimensional electride β–Yb5Sb3,” Phys. Rev. B 103, 235126 (2021).10.1103/physrevb.103.235126
    [41]
    A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, “New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 364–369 (2002).10.1107/s0108768102006948
    [42]
    F. Karsai, P. Tiwald, R. Laskowski, F. Tran, D. Koller, S. Gräfe, J. Burgdörfer, L. Wirtz, and P. Blaha, “F center in lithium fluoride revisited: Comparison of solid-state physics and quantum-chemistry approaches,” Phys. Rev. B 89, 125429 (2014).10.1103/physrevb.89.125429
    [43]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [44]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [45]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
    [46]
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
    [47]
    A. Paramekanti, D. D. Maharaj, and B. D. Gaulin, “Octupolar order in d-orbital Mott insulators,” Phys. Rev. B 101, 054439 (2020).10.1103/physrevb.101.054439
    [48]
    S.-J. Song, Y.-Q. Lin, B.-Z. Li, S.-Q. Wu, Q.-Q. Zhu, Z. Ren, and G.-H. Cao, “Tetragonal polymorph of BaFe2S2O as an antiferromagnetic Mott insulator,” Phys. Rev. Mater. 6, 055002 (2022).10.1103/physrevmaterials.6.055002
    [49]
    D. I. Badrtdinov and S. A. Nikolaev, “Localised magnetism in 2D electrides,” J. Mater. Chem. C 8, 7858–7865 (2020).10.1039/d0tc01223h
    [50]
    X. Huang, L. Duan, Z. Zhang, C. Fang, L. Chen, Q. Wang, Y. Zhang, W. Shen, X. Jia, L. Wu, and B. Wan, “Uncovering 0D and 1D electrides with low work function in a Sc–P system,” J. Phys. Chem. C 126, 20710–20716 (2022).10.1021/acs.jpcc.2c07066
    [51]
    B. Wan, S. Xu, X. Yuan, H. Tang, D. Huang, W. Zhou, L. Wu, J. Zhang, and H. Gou, “Diversities of stoichiometry and electrical conductivity in sodium sulfides,” J. Mater. Chem. A 7, 16472–16478 (2019).10.1039/c9ta05907e
    [52]
    W. M. Hurng and J. D. Corbett, “Alkaline-earth-metal antimonides and bismuthides with the A5Pn3 stoichiometry. Interstitial and other Zintl phases formed on their reactions with halogen or sulfur,” Chem. Mater. 1, 311–319 (1989).10.1021/cm00003a008
    [53]
    G. Bruzzone, E. Franceschi, and F. Merlo, “M5X3 intermediate phases formed by Ca, Sr and Ba,” J. Less-Common Met. 60, 59–63 (1978).10.1016/0022-5088(78)90089-9
    [54]
    M. Martinez-Ripoll and G. Brauer, “The crystal structure of Ca5Sb3,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 30, 1083–1087 (1974).10.1107/s0567740874004304
    [55]
    M. Martinez-Ripoll, A. Haase, and G. Brauer, “The crystal structure of Ca5Bi3,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 30, 2004–2006 (1974).10.1107/s0567740874006273
    [56]
    [57]
    A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92, 5397–5403 (1990).10.1063/1.458517
    [58]
    Q. Chen, X. Zheng, P. Jiang, Y.-H. Zhou, L. Zhang, and Z. Zeng, “Electric field induced tunable half-metallicity in an A-type antiferromagnetic bilayer LaBr2,” Phys. Rev. B 106, 245423 (2022).10.1103/physrevb.106.245423
    [59]
    Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, “Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications,” Light: Sci. Appl. 9, 190 (2020).10.1038/s41377-020-00421-5
    [60]
    K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, “2D materials and van der Waals heterostructures,” Science 353, aac9439 (2016).10.1126/science.aac9439
    [61]
    H. J. M. Jönsson, M. Ekholm, M. Bykov, L. Dubrovinsky, S. Van Smaalen, and I. A. Abrikosov, “Inverse pressure-induced Mott transition in TiPO4,” Phys. Rev. B 99, 245132 (2019).10.1103/physrevb.99.245132
    [62]
    T. Inoshita, S. Jeong, N. Hamada, and H. Hosono, “Exploration for two-dimensional electrides via database screening and ab initio calculation,” Phys. Rev. X. 4, 031023 (2014).10.1103/physrevx.4.031023
    [63]
    M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, and H. Hosono, “Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis,” Nat. Commun. 6, 6731 (2015).10.1038/ncomms7731
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (37) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return