Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Yao Weipeng, Nakatsutsumi Motoaki, Buffechoux Sébastien, Antici Patrizio, Borghesi Marco, Ciardi Andrea, Chen Sophia N., d’Humières Emmanuel, Gremillet Laurent, Heathcote Robert, Horný Vojtěch, McKenna Paul, Quinn Mark N., Romagnani Lorenzo, Royle Ryan, Sarri Gianluca, Sentoku Yasuhiko, Schlenvoigt Hans-Peter, Toncian Toma, Tresca Olivier, Vassura Laura, Willi Oswald, Fuchs Julien. Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers[J]. Matter and Radiation at Extremes, 2024, 9(4): 047202. doi: 10.1063/5.0184919
Citation: Yao Weipeng, Nakatsutsumi Motoaki, Buffechoux Sébastien, Antici Patrizio, Borghesi Marco, Ciardi Andrea, Chen Sophia N., d’Humières Emmanuel, Gremillet Laurent, Heathcote Robert, Horný Vojtěch, McKenna Paul, Quinn Mark N., Romagnani Lorenzo, Royle Ryan, Sarri Gianluca, Sentoku Yasuhiko, Schlenvoigt Hans-Peter, Toncian Toma, Tresca Olivier, Vassura Laura, Willi Oswald, Fuchs Julien. Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers[J]. Matter and Radiation at Extremes, 2024, 9(4): 047202. doi: 10.1063/5.0184919

Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers

doi: 10.1063/5.0184919
More Information
  • Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside. The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations, revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection, which is one possible mechanism to boost electron energization. In addition, the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation. Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Weipeng Yao: Formal analysis (equal); Investigation (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Motoaki Nakatsutsumi: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Sébastien Buffechoux: Data curation (equal); Investigation (equal). Patrizio Antici: Data curation (equal); Resources (equal); Writing – review & editing (equal). Marco Borghesi: Resources (equal); Supervision (equal); Writing – review & editing (equal). Andrea Ciardi: Supervision (equal); Writing – review & editing (equal). Sophia N. Chen: Supervision (equal); Writing – review & editing (equal). Emmanuel d’Humières: Conceptualization (equal); Methodology (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal). Laurent Gremillet: Conceptualization (equal); Investigation (equal); Methodology (equal); Supervision (equal); Writing – review & editing (equal). Robert Heathcote: Data curation (equal); Writing – review & editing (equal). Vojtěch Horný: Investigation (equal); Software (equal); Writing – review & editing (equal). Paul McKenna: Resources (equal); Supervision (equal); Writing – review & editing (equal). Mark N. Quinn: Data curation (equal). Lorenzo Romagnani: Data curation (equal). Ryan Royle: Data curation (equal). Gianluca Sarri: Data curation (equal); Writing – review & editing (equal). Yasuhiko Sentoku: Data curation (equal); Supervision (equal); Writing – review & editing (equal). Hans-Peter Schlenvoigt: Data curation (equal); Writing – review & editing (equal). Toma Toncian: Data curation (equal). Olivier Tresca: Data curation (equal). Laura Vassura: Data curation (equal). Oswald Willi: Data curation (equal); Supervision (equal); Writing – review & editing (equal). Julien Fuchs: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Project administration (equal); Resources (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal).
    Author Contributions
    J.F. conceived the project. M.N., S.B., P.A., M.B., R.H., M.N.Q., L.R., G.S., H.-P.S., T.T., O.T., L.V., O.W., and J.F. performed the experiments. W.Y., S.B., S.N.C., M.N., and J.F. analyzed the data. W.Y. performed and analyzed the smilei simulations with discussions with R.R., Y.S., V.H., E.d.H., L.G., and J.F. W.Y., S.N.C., L.G. and J.F. wrote the bulk of the paper, with major contributions from E.d.H. All authors commented and revised the paper.
    All data needed to evaluate the conclusions in the paper are present in the paper. Experimental data and simulations are archived on servers at LULI laboratory and are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [2]
    J. Fuchs, P. Antici, E. D’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48 (2006).10.1038/nphys199
    [3]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, and G. A. Wurden, “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
    [4]
    A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, and P. McKenna, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9
    [5]
    M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen, G. Famulari, T. Gangolf, G. Revet, A. Schiavi, M. Senzacqua, and P. Antici, “Laser-accelerated particle beams for stress testing of materials,” Nat. Commun. 9, 372 (2018).10.1038/s41467-017-02675-x
    [6]
    Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High-resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2005).10.1103/physrevlett.94.025003
    [7]
    A. Mančić, A. Lévy, M. Harmand, M. Nakatsutsumi, P. Antici, P. Audebert, P. Combis, S. Fourmaux, S. Mazevet, O. Peyrusse, V. Recoules, P. Renaudin, J. Robiche, F. Dorchies, and J. Fuchs, “Picosecond short-range disordering in isochorically heated aluminum at solid density,” Phys. Rev. Lett. 104, 035002 (2010).10.1103/physrevlett.104.035002
    [8]
    B. Mahieu, N. Jourdain, K. Ta Phuoc, F. Dorchies, J. P. Goddet, A. Lifschitz, P. Renaudin, and L. Lecherbourg, “Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source,” Nat. Commun. 9, 3276 (2018).10.1038/s41467-018-05791-4
    [9]
    H. Chen, F. Fiuza, A. Link, A. Hazi, M. Hill, D. Hoarty, S. James, S. Kerr, D. D. Meyerhofer, J. Myatt, J. Park, Y. Sentoku, and G. J. Williams, “Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications,” Phys. Rev. Lett. 114, 215001 (2015).10.1103/physrevlett.114.215001
    [10]
    D. P. Higginson, P. Korneev, C. Ruyer, R. Riquier, Q. Moreno, J. Béard, S. N. Chen, A. Grassi, M. Grech, L. Gremillet et al., “Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows,” Commun. Phys. 2, 60 (2019).10.1038/s42005-019-0160-6
    [11]
    A. Prasselsperger, M. Coughlan, N. Breslin, M. Yeung, C. Arthur, H. Donnelly, S. White, M. Afshari, M. Speicher, R. Yang et al., “Real-time electron solvation induced by bursts of laser-accelerated protons in liquid water,” Phys. Rev. Lett. 127, 186001 (2021).10.1103/physrevlett.127.186001
    [12]
    H. T. Nguyen, J. A. Britten, T. C. Carlson, J. D. Nissen, L. J. Summers, C. R. Hoaglan, M. D. Aasen, J. E. Peterson, and I. Jovanovic, “Gratings for high-energy petawatt lasers,” Proc. SPIE 5991, 59911M (2006).10.1117/12.633689
    [13]
    M. Chorel, T. Lanternier, E. Lavastre, N. Bonod, B. Bousquet, and J. Néauport, “Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers,” Opt. Express 26, 11764 (2018).10.1364/oe.26.011764
    [14]
    D. Batani, M. Koenig, J. Miquel, J. Ducret, E. d’Humieres, S. Hulin, J. Caron, J. Feugeas, P. Nicolai, V. Tikhonchuk et al., “Development of the petawatt aquitaine laser system and new perspectives in physics,” Phys. Scr. 2014(T161), 014016.10.1088/0031-8949/2014/t161/014016
    [15]
    J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge et al., “The commissioning of the advanced radiographic capability laser system: Experimental and modeling results at the main laser output,” Proc. SPIE 9345, 93450I (2015).10.1117/12.2080459
    [16]
    Y. Arikawa, S. Kojima, A. Morace, S. Sakata, T. Gawa, Y. Taguchi, Y. Abe, Z. Zhang, X. Vaisseau, S. H. Lee et al., “Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror,” Appl. Opt. 55, 6850 (2016).10.1364/ao.55.006850
    [17]
    X. Liang, Y. Leng, R. Li, and Z. Xu, “Recent progress on the shanghai superintense ultrafast laser facility (SULF) at SIOM,” in OSA High-Brightness Sources and Light-Driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS) (Optica Publishing Group, 2020), p. HTh2B.2.
    [18]
    S. Steinke, J. van Tilborg, C. Benedetti, C. Geddes, C. Schroeder, J. Daniels, K. Swanson, A. Gonsalves, K. Nakamura, N. Matlis et al., “Multistage coupling of independent laser-plasma accelerators,” Nature 530, 190 (2016).10.1038/nature16525
    [19]
    A. Debus, R. Pausch, A. Huebl, K. Steiniger, R. Widera, T. E. Cowan, U. Schramm, and M. Bussmann, “Circumventing the dephasing and depletion limits of laser-wakefield acceleration,” Phys. Rev. X 9, 031044 (2019).10.1103/physrevx.9.031044
    [20]
    M. I. K. Santala, M. Zepf, I. Watts, F. N. Beg, E. Clark, M. Tatarakis, K. Krushelnick, A. E. Dangor, T. McCanny, I. Spencer et al., “Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions,” Phys. Rev. Lett. 84, 1459 (2000).10.1103/physrevlett.84.1459
    [21]
    A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett, M. H. Key, C. Andersen, R. Snavely, and R. R. Freeman, “Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses,” Phys. Rev. Lett. 88, 215006 (2002).10.1103/physrevlett.88.215006
    [22]
    J. S. Green, V. Ovchinnikov, R. Evans, K. Akli, H. Azechi, F. Beg, C. Bellei, R. Freeman, H. Habara, R. Heathcote et al., “Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas,” Phys. Rev. Lett. 100, 015003 (2008).10.1103/physrevlett.100.015003
    [23]
    S. Chawla, M. S. Wei, R. Mishra, K. U. Akli, C. D. Chen, H. S. McLean, A. Morace, P. K. Patel, H. Sawada, Y. Sentoku et al., “Effect of target material on fast-electron transport and resistive collimation,” Phys. Rev. Lett. 110, 025001 (2013).10.1103/physrevlett.110.025001
    [24]
    C. D. Chen, A. J. Kemp, F. Perez, A. Link, F. N. Beg, S. Chawla, M. H. Key, H. McLean, A. Morace, Y. Ping et al., “Comparisons of angularly and spectrally resolved bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions,” Phys. Plasmas 20, 052703 (2013).10.1063/1.4804348
    [25]
    S. Fujioka, T. Johzaki, Y. Arikawa, Z. Zhang, A. Morace, T. Ikenouchi, T. Ozaki, T. Nagai, Y. Abe, S. Kojima et al., “Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment,” Phys. Rev. E 91, 063102 (2015).10.1103/physreve.91.063102
    [26]
    T. Ziegler, D. Albach, C. Bernert, S. Bock, F.-E. Brack, T. Cowan, N. Dover, M. Garten, L. Gaus, R. Gebhardt et al., “Proton beam quality enhancement by spectral phase control of a PW-class laser system,” Sci. Rep. 11, 7338 (2021).10.1038/s41598-021-86547-x
    [27]
    R. H. H. Scott, C. Beaucourt, H.-P. Schlenvoigt, K. Markey, K. L. Lancaster, C. P. Ridgers, C. M. Brenner, J. Pasley, R. J. Gray, I. O. Musgrave et al., “Controlling fast-electron-beam divergence using two laser pulses,” Phys. Rev. Lett. 109, 015001 (2012).10.1103/physrevlett.109.015001
    [28]
    S. Malko, X. Vaisseau, F. Perez, D. Batani, A. Curcio, M. Ehret, J. Honrubia, K. Jakubowska, A. Morace, J. J. Santos, and L. Volpe, “Enhanced relativistic-electron beam collimation using two consecutive laser pulses,” Sci. Rep. 9, 14061 (2019).10.1038/s41598-019-50401-y
    [29]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697
    [30]
    P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002
    [31]
    K. Markey, P. McKenna, C. M. Brenner, D. C. Carroll, M. M. Günther, K. Harres, S. Kar, K. Lancaster, F. Nürnberg, M. N. Quinn et al., “Spectral enhancement in the double pulse regime of laser proton acceleration,” Phys. Rev. Lett. 105, 195008 (2010).10.1103/physrevlett.105.195008
    [32]
    G. G. Scott, J. S. Green, V. Bagnoud, C. Brabetz, C. M. Brenner, D. C. Carroll, D. A. MacLellan, A. P. L. Robinson, M. Roth, C. Spindloe et al., “Multi-pulse enhanced laser ion acceleration using plasma half cavity targets,” Appl. Phys. Lett. 101, 024101 (2012).10.1063/1.4734397
    [33]
    A. Morace, N. Iwata, Y. Sentoku, K. Mima, Y. Arikawa, A. Yogo, A. Andreev, S. Tosaki, X. Vaisseau, Y. Abe et al., “Enhancing laser beam performance by interfering intense laser beamlets,” Nat. Commun. 10, 2995 (2019).10.1038/s41467-019-10997-1
    [34]
    A. Yogo, K. Mima, N. Iwata, S. Tosaki, A. Morace, Y. Arikawa, S. Fujioka, T. Johzaki, Y. Sentoku, H. Nishimura, A. Sagisaka, K. Matsuo, N. Kamitsukasa, S. Kojima, H. Nagatomo, M. Nakai, H. Shiraga, M. Murakami, S. Tokita, J. Kawanaka, N. Miyanaga, K. Yamanoi, T. Norimatsu, H. Sakagami, S. V. Bulanov, K. Kondo, and H. Azechi, “Boosting laser-ion acceleration with multi-picosecond pulses,” Sci. Rep. 7, 42451 (2017).10.1038/srep42451
    [35]
    A. E. Raymond, C. F. Dong, A. McKelvey, C. Zulick, N. Alexander, A. Bhattacharjee, P. T. Campbell, H. Chen, V. Chvykov, E. Del Rio et al., “Relativistic-electron-driven magnetic reconnection in the laboratory,” Phys. Rev. E 98, 043207 (2018).10.1103/physreve.98.043207
    [36]
    C. A. J. Palmer, P. T. Campbell, Y. Ma, L. Antonelli, A. F. A. Bott, G. Gregori, J. Halliday, Y. Katzir, P. Kordell, K. Krushelnick et al., “Field reconstruction from proton radiography of intense laser driven magnetic reconnection,” Phys. Plasmas 26, 083109 (2019).10.1063/1.5092733
    [37]
    G. Sarri, A. Macchi, C. A. Cecchetti, S. Kar, T. V. Liseykina, X. H. Yang, M. E. Dieckmann, J. Fuchs, M. Galimberti, L. A. Gizzi et al., “Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction,” Phys. Rev. Lett. 109, 205002 (2012).10.1103/physrevlett.109.205002
    [38]
    W. Schumaker, N. Nakanii, C. McGuffey, C. Zulick, V. Chyvkov, F. Dollar, H. Habara, G. Kalintchenko, A. Maksimchuk, K. Tanaka et al., “Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions,” Phys. Rev. Lett. 110, 015003 (2013).10.1103/physrevlett.110.015003
    [39]
    P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock et al., “Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions,” Phys. Rev. Lett. 97, 255001 (2006).10.1103/physrevlett.97.255001
    [40]
    M. J. Rosenberg, C. K. Li, W. Fox, A. B. Zylstra, C. Stoeckl, F. H. Séguin, J. A. Frenje, and R. D. Petrasso, “Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly driven laser-plasma experiments,” Phys. Rev. Lett. 114, 205004 (2015).10.1103/physrevlett.114.205004
    [41]
    D. O. Golovin, S. R. Mirfayzi, Y. J. Gu, Y. Abe, Y. Honoki, T. Mori, H. Nagatomo, K. Okamoto, S. Shokita, K. Yamanoi et al., “Enhancement of ion energy and flux by the influence of magnetic reconnection in foam targets,” High Energy Density Phys. 36, 100840 (2020).10.1016/j.hedp.2020.100840
    [42]
    J. Kim, S. Wilks, A. Kemp, M. Sherlock, T. Ma, F. Beg, and D. Mariscal, “Efficient ion acceleration by multistaged intense short laser pulses,” Phys. Rev. Res. 4, L032003 (2022).10.1103/physrevresearch.4.l032003
    [43]
    Y. J. Gu, F. Pegoraro, P. V. Sasorov, D. Golovin, A. Yogo, G. Korn, and S. V. Bulanov, “Electromagnetic burst generation during annihilation of magnetic field in relativistic laser-plasma interaction,” Sci. Rep. 9, 19462 (2019).10.1038/s41598-019-55976-0
    [44]
    J. Ferri, E. Siminos, and T. Fülöp, “Enhanced target normal sheath acceleration using colliding laser pulses,” Commun. Phys. 2, 40 (2019).10.1038/s42005-019-0140-x
    [45]
    J. Ferri, E. Siminos, L. Gremillet, and T. Fülöp, “Effects of oblique incidence and colliding pulses on laser-driven proton acceleration from relativistically transparent ultrathin targets,” J. Plasma Phys. 86, 905860505 (2020).10.1017/s0022377820000847
    [46]
    N. Rahman, J. R. Smith, G. K. Ngirmang, and C. Orban, “Particle-in-cell modeling of a potential demonstration experiment for double pulse enhanced target normal sheath acceleration,” Phys. Plasma 28, 073103 (2021).10.1063/5.0045320
    [47]
    K. Burdonov, A. Fazzini, V. Lelasseux, J. Albrecht, P. Antici, Y. Ayoul, A. Beluze, D. Cavanna, T. Ceccotti, M. Chabanis et al., “Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level,” Matter Radiat. Extremes 6, 064402 (2021).10.1063/5.0065138
    [48]
    D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. Masson-Laborde, X. Davoine, N. Blanchot, J. Dubois, X. Vaisseau, E. d’Humières et al., “Enhanced ion acceleration using the high-energy petawatt PETAL laser,” Matter Radiat. Extremes 6, 056901 (2021).10.1063/5.0046679
    [49]
    P. R. Bolton, M. Borghesi, C. Brenner, D. C. Carroll, C. De Martinis, F. Fiorini, A. Flacco, V. Floquet, J. Fuchs, P. Gallegos et al., “Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams,” Phys. Med. 30, 255 (2014).10.1016/j.ejmp.2013.09.002
    [50]
    A. Link, R. R. Freeman, D. W. Schumacher, and L. D. Van Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18, 053107 (2011).10.1063/1.3587123
    [51]
    D. R. Rusby, L. A. Wilson, R. J. Gray, R. J. Dance, N. M. H. Butler, D. A. MacLellan, G. G. Scott, V. Bagnoud, B. Zielbauer, P. McKenna, and D. Neely, “Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions,” J. Plasma Phys. 81, 475810505 (2015).10.1017/s0022377815000835
    [52]
    F. Wagner, S. Bedacht, A. Ortner, M. Roth, A. Tauschwitz, B. Zielbauer, and V. Bagnoud, “Pre-plasma formation in experiments using petawatt lasers,” Opt. Express 22, 29505 (2014).10.1364/oe.22.029505
    [53]
    S. N. Chen, G. Gregori, P. K. Patel, H.-K. Chung, R. G. Evans, R. R. Freeman, E. Garcia Saiz, S. H. Glenzer, S. B. Hansen, F. Y. Khattak et al., “Creation of hot dense matter in short-pulse laser-plasma interaction with tamped titanium foils,” Phys. Plasmas 14, 102701 (2007).10.1063/1.2777118
    [54]
    R. Ramis, R. Schmalz, and J. Meyer-Ter-Vehn, “MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics,” Comput. Phys. Commun. 49, 475 (1988).10.1016/0010-4655(88)90008-2
    [55]
    M. M. Michaelis and O. Willi, “Refractive fringe diagnostics of laser produced plasmas,” Opt. Commun. 36, 153 (1981).10.1016/0030-4018(81)90159-0
    [56]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [57]
    G. Malka and J. L. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75 (1996).10.1103/physrevlett.77.75
    [58]
    [59]
    G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, and P. Sala, “The FLUKA code: Description and benchmarking,” AIP Conf. Proc. 896, 31 (2007).10.1063/1.2720455
    [60]
    T. T. Böhlen, F. Cerutti, M. P. W. Chin, A. Fassò, A. Ferrari, P. G. Ortega, A. Mairani, P. R. Sala, G. Smirnov, and V. Vlachoudis, “The FLUKA code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211 (2014).10.1016/j.nds.2014.07.049
    [61]
    T. Kluge, T. Cowan, A. Debus, U. Schramm, K. Zeil, and M. Bussmann, “Electron temperature scaling in laser interaction with solids,” Phys. Rev. Lett. 107, 205003 (2011).10.1103/physrevlett.107.205003
    [62]
    G. Boutoux, N. Rabhi, D. Batani, A. Binet, J.-E. Ducret, K. Jakubowska, J.-P. Nègre, C. Reverdin, and I. Thfoin, “Study of imaging plate detector sensitivity to 5-18 MeV electrons,” Rev. Sci. Instrum. 86, 113304 (2015).10.1063/1.4936141
    [63]
    P. Antici, J. Fuchs, M. Borghesi, L. Gremillet, T. Grismayer, Y. Sentoku, E. D’Humières, C. A. Cecchetti, A. Mančić, A. C. Pipahl, T. Toncian, O. Willi, P. Mora, and P. Audebert, “Hot and cold electron dynamics following high-intensity laser matter interaction,” Phys. Rev. Lett. 101, 105004 (2008).10.1103/physrevlett.101.105004
    [64]
    T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink et al., “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92, 204801 (2004).10.1103/physrevlett.92.204801
    [65]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [66]
    P. Mora, “Thin-foil expansion into a vacuum,” Phys. Rev. E 72, 056401 (2005).10.1103/physreve.72.056401
    [67]
    J. C. Adam, A. Héron, and G. Laval, “Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas,” Phys. Rev. Lett. 97, 205006 (2006).10.1103/physrevlett.97.205006
    [68]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech, “SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351 (2018).10.1016/j.cpc.2017.09.024
    [69]
    F. Pérez, A. J. Kemp, L. Divol, C. D. Chen, and P. K. Patel, “Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interactions,” Phys. Rev. Lett. 111, 245001 (2013).10.1103/physrevlett.111.245001
    [70]
    Z. Xu, B. Qiao, H. X. Chang, W. P. Yao, S. Z. Wu, X. Q. Yan, C. T. Zhou, X. G. Wang, and X. T. He, “Characterization of magnetic reconnection in the high-energy-density regime,” Phys. Rev. E 93, 033206 (2016).10.1103/physreve.93.033206
    [71]
    A. J. Kemp and S. C. Wilks, “Direct electron acceleration in multi-kilojoule, multi-picosecond laser pulses,” Phys. Plasmas 27, 103106 (2020).10.1063/5.0007159
    [72]
    F. Pérez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre, “Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes,” Phys. Plasmas 19, 083104 (2012).10.1063/1.4742167
    [73]
    D. P. Higginson, I. Holod, and A. Link, “A corrected method for Coulomb scattering in arbitrarily weighted particle-in-cell plasma simulations,” J. Comput. Phys. 413, 109450 (2020).10.1016/j.jcp.2020.109450
    [74]
    R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in Particle in Cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).10.1063/1.3559494
    [75]
    A. D. Greenwood, K. L. Cartwright, J. W. Luginsland, and E. A. Baca, “On the elimination of numerical Cerenkov radiation in PIC simulations,” J. Comput. Phys. 201, 665 (2004).10.1016/j.jcp.2004.06.021
    [76]
    J. L. Vay, C. G. R. Geddes, E. Cormier-Michel, and D. P. Grote, “Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame,” J. Comput. Phys. 230, 5908 (2011).10.1016/j.jcp.2011.04.003
    [77]
    J. R. Davies, A. R. Bell, M. G. Haines, and S. M. Guérin, “Short-pulse high-intensity laser-generated fast electron transport into thick solid targets,” Phys. Rev. E 56, 7193 (1997).10.1103/physreve.56.7193
    [78]
    A. R. Bell and R. J. Kingham, “Resistive collimation of electron beams in laser-produced plasmas,” Phys. Rev. Lett. 91, 035003 (2003).10.1103/physrevlett.91.035003
    [79]
    R. G. Evans, “Modelling short pulse, high intensity laser plasma interactions,” High Energy Density Phys. 2, 35 (2006).10.1016/j.hedp.2006.02.002
    [80]
    A. Debayle, J. J. Honrubia, E. D’Humières, and V. T. Tikhonchuk, “Divergence of laser-driven relativistic electron beams,” Phys. Rev. E 82, 036405 (2010).10.1103/physreve.82.036405
    [81]
    A. P. L. Robinson, D. J. Strozzi, J. R. Davies, L. Gremillet, J. J. Honrubia, T. Johzaki, R. J. Kingham, M. Sherlock, and A. A. Solodov, “Theory of fast electron transport for fast ignition,” Nucl. Fusion 54, 054003 (2014).10.1088/0029-5515/54/5/054003
    [82]
    Y. Sentoku, E. D’Humières, L. Romagnani, P. Audebert, and J. Fuchs, “Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields,” Phys. Rev. Lett. 107, 135005 (2011).10.1103/physrevlett.107.135005
    [83]
    L. Gremillet, G. Bonnaud, and F. Amiranoff, “Filamented transport of laser-generated relativistic electrons penetrating a solid target,” Phys. Plasmas 9, 941 (2002).10.1063/1.1432994
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (49) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return