Citation: | Feng Bingtao, Xie Longjian, Hou Xuyuan, Liu Shucheng, Chen Luyao, Zhao Xinyu, Li Chenyi, Zhou Qiang, Hu Kuo, Liu Zhaodong, Liu Bingbing. A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press[J]. Matter and Radiation at Extremes, 2024, 9(4): 047401. doi: 10.1063/5.0184031 |
[1] |
T. Ishii, Z. Liu, and T. Katsura, “A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils,” Engineering 5(3), 434–440 (2019).10.1016/j.eng.2019.01.013
|
[2] |
D. Yamazaki, E. Ito, T. Yoshino, N. Tsujino, A. Yoneda, H. Gomi, J. Vazhakuttiyakam, M. Sakurai, Y. Zhang, Y. Higo, and Y. Tange, “High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3,” C. R. Geosci. 351(2–3), 253–259 (2019).10.1016/j.crte.2018.07.004
|
[3] |
L. Xie, A. Yoneda, D. Yamazaki, G. Manthilake, Y. Higo, Y. Tange, N. Guignot, A. King, M. Scheel, and D. Andrault, “Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification,” Nat. Commun. 11(1), 548 (2020).10.1038/s41467-019-14071-8
|
[4] |
L. Xie, A. Yoneda, T. Yoshino, D. Yamazaki, N. Tsujino, Y. Higo, Y. Tange, T. Irifune, T. Shimei, and E. Ito, “Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus,” Rev. Sci. Instrum. 88(9), 093904 (2017).10.1063/1.4993959
|
[5] |
A. Yoneda, L. Xie, N. Tsujino, and E. Ito, “Semiconductor diamond heater in the Kawai multianvil apparatus: An innovation to generate the lower mantle geotherm,” High Pressure Res. 34(4), 392–403 (2014).10.1080/08957959.2014.969255
|
[6] |
L. Xie, A. Chanyshev, T. Ishii, D. Bondar, K. Nishida, Z. Chen, S. Bhat, R. Farla, Y. Higo, Y. Tange, X. Su, B. Yan, S. Ma, and T. Katsura, “Simultaneous generation of ultrahigh pressure and temperature to 50 GPa and 3300 K in multi-anvil apparatus,” Rev. Sci. Instrum. 92(10), 103902 (2021).10.1063/5.0059279
|
[7] |
L. Xie, A. Yoneda, Z. Liu, K. Nishida, and T. Katsura, “Boron-doped diamond synthesized by chemical vapor deposition as a heating element in a multi-anvil apparatus,” High Pressure Res. 40(3), 369–378 (2020).10.1080/08957959.2020.1789618
|
[8] |
L. Xie, “Machinable boron-doped diamond as a practical heating element in multi-anvil apparatuses,” Rev. Sci. Instrum. 92(2), 023901 (2021).10.1063/5.0036771
|
[9] |
L. Xie, A. Yoneda, T. Yoshino, H. Fei, and E. Ito, “Graphite–boron composite heater in a Kawai-type apparatus: The inhibitory effect of boron oxide and countermeasures,” High Pressure Res. 36(2), 105–120 (2016).10.1080/08957959.2016.1164151
|
[10] |
X. Zhou, D. Ma, L. Wang, Y. Zhao, and S. Wang, “Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures,” Rev. Sci. Instrum. 91(1), 015118 (2020).10.1063/1.5128190
|
[11] |
L. Xie, A. Yoneda, T. Katsura, D. Andrault, Y. Tange, and Y. Higo, “Direct viscosity measurement of peridotite melt to lower-mantle conditions: A further support for a fractional magma-ocean solidification at the top of the lower mantle,” Geophys. Res. Lett. 48(19), e2021GL094507, (2021).10.1029/2021gl094507
|
[12] |
K. Nishida, L. Xie, E. J. Kim, and T. Katsura, “A strip-type boron-doped diamond heater synthesized by chemical vapor deposition for large-volume presses,” Rev. Sci. Instrum. 91(9), 095108 (2020).10.1063/5.0011742
|
[13] |
Y. C. Shang, F. R. Shen, X. Y. Hou, L. Y. Chen, K. Hu, X. Li, R. Liu, Q. Tao, P.-W. Zhu, Z.-D. Liu, M.-G. Yao, Q. Zhou, T. Cui, and B.-B. Liu, “Pressure generation above 35 GPa in a Walker-type large-volume press,” Chin. Phys. Lett. 37(8), 080701 (2020).10.1088/0256-307x/37/8/080701
|
[14] |
Z. Liu, T. Irifune, M. Nishi, Y. Tange, T. Arimoto, and T. Shinmei, “Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K,” Phys. Earth Planet. Inter. 257, 18–27 (2016).10.1016/j.pepi.2016.05.006
|
[15] | |
[16] |
S. Block, J. A. H. Da Jornada, and G. J. Piermarini, “Pressure-temperature phase diagram of zirconia,” J. Am. Ceram. Soc. 68(9), 497–499 (1985).10.1111/j.1151-2916.1985.tb15817.x
|
[17] |
J. M. Leger, P. E. Tomaszewski, A. Atouf, and A. S. Pereira, “Pressure-induced structural phase transitions in zirconia under high pressure,” Phys. Rev. B 47(21), 14075 (1993).10.1103/physrevb.47.14075
|
[18] |
P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, “High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia,” Phys. Rev. B 62(13), 8731 (2000).10.1103/physrevb.62.8731
|
[19] |
O. Ohtaka, D. Andrault, P. Bouvier, E. Schultz, and M. Mezouar, “Phase relations and equation of state of ZrO2 to 100 GPa,” J. Appl. Crystallogr. 38(5), 727–733 (2005).10.1107/s0021889805018145
|
[20] |
W. D. Kingery, “Thermal conductivity: XIV, conductivity of multicomponent systems,” J. Am. Ceram. Soc. 42(12), 617–627 (1959).10.1111/j.1151-2916.1959.tb13583.x
|
[21] |
J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, “Thermal conductivity of diamond between 170 and 1200 K and the isotope effect,” Phys. Rev. B 47(22), 14850–14856 (1993).10.1103/physrevb.47.14850
|
[22] |
W. S. Williams, “The thermal conductivity of metallic ceramics,” JOM 50(6), 62–66 (1998).10.1007/s11837-998-0131-y
|
[23] |
B. Guimarães, C. M. Fernandes, D. Figueiredo, M. F. Cerqueira, O. Carvalho, F. S. Silva, and G. Miranda, “A novel approach to reduce in-service temperature in WC-Co cutting tools,” Ceram. Int. 46(3), 3002–3008 (2020).10.1016/j.ceramint.2019.09.299
|
[24] |
M. Fukuda, A. Hasegawa, and S. Nogami, “Thermal properties of pure tungsten and its alloys for fusion applications,” Fusion Eng. Des. 132, 1–6 (2018).10.1016/j.fusengdes.2018.04.117
|
[25] |
M. Bauccio, ASM Engineering Materials Reference Book, 2nd ed. (ASM International, OH, 1994).
|
[26] |
O. L. Anderson and K. Zou, “Thermodynamic functions and properties of MgO at high compression and high temperature,” J. Phys. Chem. Ref. Data 19(1), 69–83 (1990).10.1063/1.555873
|
[27] |
A. Liang, Y. Liu, H. Liang, F. Liu, C. Fan, J. Zhang, J. Wu, J. Chen, and D. He, “Thermal insulation performance of monoclinic ZrO2 and cubic ZrO2–CaO solid solution under high pressure and high temperature,” High Pressure Res. 38(4), 458–467 (2018).10.1080/08957959.2018.1517341
|
[28] |
R. R. Reeber and K. Wang, “Thermal expansion, molar volume and specific heat of diamond from 0 to 3000 k,” J. Electron. Mater. 25(1), 63–67 (1996).10.1007/bf02666175
|
[29] |
T. Song, X. Sun, Y. Liu, Z. Liu, Q. Chen, and C. Wang, “Comparative study of the structural and thermodynamic properties of MgO at high pressures and high temperatures,” J. Alloys Compd. 461(1–2), 279–284 (2008).10.1016/j.jallcom.2007.06.122
|
[30] |
L. S. Levinson, “High-temperature heat contents of TiC and ZrC,” J. Chem. Phys. 42(8), 2891–2892 (1965).10.1063/1.1703257
|
[31] |
H. Tripathy, C. Sudha, V. T. Paul, R. Thirumurugesan, T. N. Prasanthi, R. Sundar, N. Vijayashanthi, P. Parameswaran, and S. Raju, “High temperature thermophysical properties of spark plasma sintered tungsten carbide,” Int. J. Refract. Met. Hard Mater. 104, 105804 (2022).10.1016/j.ijrmhm.2022.105804
|
[32] |
R. Hrubiak, Y. Meng, and G. Shen, “Microstructures define melting of molybdenum at high pressures,” Nat. Commun. 8(1), 14562 (2017).10.1038/ncomms14562
|
[33] |
O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, and T. Kikegawa, “Phase relations and equations of state of ZrO2 under high temperature and high pressure,” Phys. Rev. B 63(17), 174108 (2001).10.1103/physrevb.63.174108
|
[34] |
J. Hernlund, K. Leinenweber, D. Locke, and J. A. Tyburczy, “A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies,” Am. Mineral. 91(2–3), 295–305 (2006).10.2138/am.2006.1938
|
[35] |
M. J. Walter, Y. Thibault, K. Wei, and R. W. Luth, “Characterizing experimental pressure and temperature conditions in multi-anvil apparatus,” Can. J. Phys. 73(5–6), 273–286 (1995).10.1139/p95-039
|