Citation: | Wang Dong, Wang Ningning, Zhang Caoshun, Xia Chunsheng, Guo Weicheng, Yin Xia, Bu Kejun, Nakagawa Takeshi, Zhang Jianbo, Gorelli Federico, Dalladay-Simpson Philip, Meier Thomas, Lü Xujie, Sun Liling, Cheng Jinguang, Zeng Qiaoshi, Ding Yang, Mao Ho-kwang. Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides[J]. Matter and Radiation at Extremes, 2024, 9(3): 037401. doi: 10.1063/5.0183701 |
[1] |
H. K. Onnes, “The superconductivity of mercury,” Commun. Phys. Lab. Univ. Leiden 122, 124 (1911).
|
[2] |
L. Gao, Y. Xue, F. Chen, Q. Xiong, R. Meng et al., “Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m= 1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B 50, 4260 (1994).10.1103/physrevb.50.4260
|
[3] |
A. Schilling, M. Cantoni, J. Guo, and H. Ott, “Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system,” Nature 363, 56–58 (1993).10.1038/363056a0
|
[4] |
C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).10.1146/annurev-conmatphys-031218-013413
|
[5] |
A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
|
[6] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
|
[7] |
D. Wang, Y. Ding, and H.-K. Mao, “Future study of dense superconducting hydrides at high pressure,” Materials 14, 7563 (2021).10.3390/ma14247563
|
[8] |
J. Bi, Y. Nakamoto, P. Zhang, K. Shimizu, B. Zou et al., “Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9,” Nat. Commun 13, 5952 (2022).10.1038/s41467-022-33743-6
|
[9] |
L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang et al., “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
|
[10] |
P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
|
[11] |
N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee et al., “Retracted article: Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 615, 244–250 (2023).10.1038/s41586-023-05742-0
|
[12] |
N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee et al., “Retraction note: Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 624, 460 (2023).10.1038/s41586-023-06774-2
|
[13] |
N. P. Salke, A. C. Mark, M. Ahart, and R. J. Hemley, “Evidence for near ambient superconductivity in the Lu-N-H system,” arXiv:2306.06301 (2023).10.48550/arXiv.2306.06301
|
[14] |
P. Shan, N. Wang, X. Zheng, Q. Qiu, Y. Peng et al., “Pressure-induced color change in the lutetium dihydride LuH2,” Chin. Phys. Lett. 40, 046101 (2023).10.1088/0256-307x/40/4/046101
|
[15] |
Z. Liu, Y. Zhang, S. Huang, X. Ming, Q. Li et al., “Pressure-induced color change arising from transformation between intra-and inter-band transitions in LuH2±xNy,” Sci. China Phys. Mech. Astron 67, 227411 (2024).10.1007/s11433-023-2222-3
|
[16] |
Y.-J. Zhang, X. Ming, Q. Li, X. Zhu, B. Zheng et al., “Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride,” Sci. China Phys., Mech. Astron. 66, 287411 (2023).10.1007/s11433-023-2109-4
|
[17] |
R. Lv, W. Tu, D. Shao, Y. Sun, and W. Lu, “Physical origin of color changes in lutetium hydride under pressure,” Chin. Phys. Lett. 40, 117401 (2023).10.1088/0256-307X/40/11/117401
|
[18] |
X. Xing, C. Wang, L. Yu, J. Xu, C. Zhang et al., “Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides,” Nat. Commun. 14, 5991 (2023).10.1038/s41467-023-41777-7
|
[19] |
X. Ming, Y.-J. Zhang, X. Zhu, Q. Li, C. He et al., “Absence of near-ambient superconductivity in LuH2±xNy,” Nature 620(7972), 72 (2023).10.1038/s41586-023-06162-w
|
[20] |
X. Tao, A. Yang, S. Yang, Y. Quan, and P. Zhang, “Leading components and pressure-induced color changes in N-doped lutetium hydride,” Sci. Bull. 68, 1372–1378 (2023).10.1016/j.scib.2023.06.007
|
[21] | |
[22] |
X. Zhao, P. Shan, N. Wang, Y. Li, Y. Xu et al., “Pressure tuning of optical reflectivity in LuH2,” Sci. Bull. 68, 883–886 (2023).10.1016/j.scib.2023.04.009
|
[23] |
Đ. Dangić, P. Garcia-Goiricelaya, Y.-W. Fang, J. Ibañez-Azpiroz, and I. Errea, “Ab initio study of the structural, vibrational, and optical properties of potential parent structures of nitrogen-doped lutetium hydride,” Phys. Rev. B 108, 064517 (2023).10.1103/physrevb.108.064517
|
[24] | |
[25] | |
[26] | |
[27] | |
[28] | |
[29] | |
[30] |
O. Moulding, S. Gallego-Parra, Y. Gao, P. Toulemonde, G. Garbarino et al., “Pressure-induced formation of cubic lutetium hydrides derived from trigonal LuH3,” Phys. Rev. B 108, 214505 (2023).10.1103/PhysRevB.108.214505
|
[31] |
M. Tkacz and T. Palasyuk, “Pressure induced phase transformation of REH3,” J. Alloys Compd. 446-447, 593–597 (2007).10.1016/j.jallcom.2006.11.042
|
[32] |
J. Hirsch, “Enormous variation in homogeneity and other anomalous features of room temperature superconductor samples: A comment on Nature 615, 244 (2023),” J. Supercond. Novel Magn. 36, 1489 (2023).10.1007/s10948-023-06593-6
|
[33] |
D. Peng, Q. Zeng, F. Lan, Z. Xing, Y. Ding et al., “The near-room-temperature upsurge of electrical resistivity in Lu-H-N is not superconductivity, but a metal-to-poor-conductor transition,” Matter Radiat. Extremes 8, 058401 (2023).10.1063/5.0166430
|
[34] |
S. Cai, J. Guo, H. Shu, L. Yang, P. Wang et al., “No evidence of superconductivity in a compressed sample prepared from lutetium foil and H2/N2 gas mixture,” Matter Radiat. Extremes 8, 048001 (2023).10.1063/5.0153447
|
[35] |
N. Wang, J. Hou, Z. Liu, T. Lu, P. Shan et al., “Percolation-induced resistivity drop in lutetium dihydride with controllable electrical conductivity over six orders of magnitude,” Sci. China Phys., Mech. Astron. 66, 297412 (2023).10.1007/s11433-023-2171-8
|
[36] |
H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/RevModPhys.90.015007
|
[37] | |
[38] | |
[39] |
Z.-Y. Cao, H. Jang, S. Choi, J. Kim, S. Kim et al., “Spectroscopic evidence for the superconductivity of elemental metal Y under pressure,” NPG Asia Mater. 15, 5 (2023).10.1038/s41427-022-00457-6
|
[40] |
K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic optical properties of metal hydrides,” ACS Photonics 5, 4677–4686 (2018).10.1021/acsphotonics.8b01243
|
[41] |
K. Ng, F. Zhang, V. Anisimov, and T. Rice, “Electronic structure of lanthanum hydrides with switchable optical properties,” Phys. Rev. Lett. 78, 1311 (1997).10.1103/physrevlett.78.1311
|
[42] |
A. Van Gogh, E. S. Kooij, and R. Griessen, “Isotope effects in switchable metal-hydride mirrors,” Phys. Rev. Lett. 83, 4614 (1999).10.1103/physrevlett.83.4614
|
[43] |
K. Ng, F. Zhang, V. Anisimov, and T. Rice, “Theory for metal hydrides with switchable optical properties,” Phys. Rev. B 59, 5398 (1999).10.1103/physrevb.59.5398
|
[44] |
A. Remhof and A. Borgschulte, “Thin-film metal hydrides,” Chemphyschem 9, 2440–2455 (2008).10.1002/cphc.200800573
|
[45] |
F. Den Broeder, S. Van der Molen, M. Kremers, J. Huiberts, D. Nagengast et al., “Visualization of hydrogen migration in solids using switchable mirrors,” Nature 394, 656–658 (1998).10.1038/29250
|
[46] |
J. N. Huiberts, R. Griessen, J. Rector, R. Wijngaarden, J. Dekker et al., “Yttrium and lanthanum hydride films with switchable optical properties,” Nature 380, 231–234 (1996).10.1038/380231a0
|
![]() |
![]() |