Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Wang Dong, Wang Ningning, Zhang Caoshun, Xia Chunsheng, Guo Weicheng, Yin Xia, Bu Kejun, Nakagawa Takeshi, Zhang Jianbo, Gorelli Federico, Dalladay-Simpson Philip, Meier Thomas, Lü Xujie, Sun Liling, Cheng Jinguang, Zeng Qiaoshi, Ding Yang, Mao Ho-kwang. Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides[J]. Matter and Radiation at Extremes, 2024, 9(3): 037401. doi: 10.1063/5.0183701
Citation: Wang Dong, Wang Ningning, Zhang Caoshun, Xia Chunsheng, Guo Weicheng, Yin Xia, Bu Kejun, Nakagawa Takeshi, Zhang Jianbo, Gorelli Federico, Dalladay-Simpson Philip, Meier Thomas, Lü Xujie, Sun Liling, Cheng Jinguang, Zeng Qiaoshi, Ding Yang, Mao Ho-kwang. Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides[J]. Matter and Radiation at Extremes, 2024, 9(3): 037401. doi: 10.1063/5.0183701

Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides

doi: 10.1063/5.0183701
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yang.ding@hpstar.ac.cn
  • Received Date: 2023-10-24
  • Accepted Date: 2024-01-29
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • Following the recent report by Dasenbrock-Gammon et al. [Nature 615 , 244–250 (2023)] of near-ambient superconductivity in nitrogen-doped lutetium trihydride (LuH3−δNε), significant debate has emerged surrounding the composition and interpretation of the observed sharp resistance drop. Here, we meticulously revisit these claims through comprehensive characterization and investigations. We definitively identify the reported material as lutetium dihydride (LuH2), resolving the ambiguity surrounding its composition. Under similar conditions (270–295 K and 1–2 GPa), we replicate the reported sharp decrease in electrical resistance with a 30% success rate, aligning with the observations by Dasenbrock-Gammon et al. However, our extensive investigations reveal this phenomenon to be a novel pressure-induced metal-to-metal transition intrinsic to LuH2, distinct from superconductivity. Intriguingly, nitrogen doping exerts minimal impact on this transition. Our work not only elucidates the fundamental properties of LuH2 and LuH3, but also critically challenges the notion of superconductivity in these lutetium hydride systems. These findings pave the way for future research on lutetium hydride systems, while emphasizing the crucial importance of rigorous verification in claims of ambient-temperature superconductivity.
  • loading
  • [1]
    H. K. Onnes, “The superconductivity of mercury,” Commun. Phys. Lab. Univ. Leiden 122, 124 (1911).
    [2]
    L. Gao, Y. Xue, F. Chen, Q. Xiong, R. Meng et al., “Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m= 1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B 50, 4260 (1994).10.1103/physrevb.50.4260
    [3]
    A. Schilling, M. Cantoni, J. Guo, and H. Ott, “Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system,” Nature 363, 56–58 (1993).10.1038/363056a0
    [4]
    C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).10.1146/annurev-conmatphys-031218-013413
    [5]
    A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
    [6]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini et al., “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
    [7]
    D. Wang, Y. Ding, and H.-K. Mao, “Future study of dense superconducting hydrides at high pressure,” Materials 14, 7563 (2021).10.3390/ma14247563
    [8]
    J. Bi, Y. Nakamoto, P. Zhang, K. Shimizu, B. Zou et al., “Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9,” Nat. Commun 13, 5952 (2022).10.1038/s41467-022-33743-6
    [9]
    L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang et al., “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
    [10]
    P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
    [11]
    N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee et al., “Retracted article: Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 615, 244–250 (2023).10.1038/s41586-023-05742-0
    [12]
    N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee et al., “Retraction note: Evidence of near-ambient superconductivity in a N-doped lutetium hydride,” Nature 624, 460 (2023).10.1038/s41586-023-06774-2
    [13]
    N. P. Salke, A. C. Mark, M. Ahart, and R. J. Hemley, “Evidence for near ambient superconductivity in the Lu-N-H system,” arXiv:2306.06301 (2023).10.48550/arXiv.2306.06301
    [14]
    P. Shan, N. Wang, X. Zheng, Q. Qiu, Y. Peng et al., “Pressure-induced color change in the lutetium dihydride LuH2,” Chin. Phys. Lett. 40, 046101 (2023).10.1088/0256-307x/40/4/046101
    [15]
    Z. Liu, Y. Zhang, S. Huang, X. Ming, Q. Li et al., “Pressure-induced color change arising from transformation between intra-and inter-band transitions in LuH2±xNy,” Sci. China Phys. Mech. Astron 67, 227411 (2024).10.1007/s11433-023-2222-3
    [16]
    Y.-J. Zhang, X. Ming, Q. Li, X. Zhu, B. Zheng et al., “Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride,” Sci. China Phys., Mech. Astron. 66, 287411 (2023).10.1007/s11433-023-2109-4
    [17]
    R. Lv, W. Tu, D. Shao, Y. Sun, and W. Lu, “Physical origin of color changes in lutetium hydride under pressure,” Chin. Phys. Lett. 40, 117401 (2023).10.1088/0256-307X/40/11/117401
    [18]
    X. Xing, C. Wang, L. Yu, J. Xu, C. Zhang et al., “Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides,” Nat. Commun. 14, 5991 (2023).10.1038/s41467-023-41777-7
    [19]
    X. Ming, Y.-J. Zhang, X. Zhu, Q. Li, C. He et al., “Absence of near-ambient superconductivity in LuH2±xNy,” Nature 620(7972), 72 (2023).10.1038/s41586-023-06162-w
    [20]
    X. Tao, A. Yang, S. Yang, Y. Quan, and P. Zhang, “Leading components and pressure-induced color changes in N-doped lutetium hydride,” Sci. Bull. 68, 1372–1378 (2023).10.1016/j.scib.2023.06.007
    [21]
    [22]
    X. Zhao, P. Shan, N. Wang, Y. Li, Y. Xu et al., “Pressure tuning of optical reflectivity in LuH2,” Sci. Bull. 68, 883–886 (2023).10.1016/j.scib.2023.04.009
    [23]
    Đ. Dangić, P. Garcia-Goiricelaya, Y.-W. Fang, J. Ibañez-Azpiroz, and I. Errea, “Ab initio study of the structural, vibrational, and optical properties of potential parent structures of nitrogen-doped lutetium hydride,” Phys. Rev. B 108, 064517 (2023).10.1103/physrevb.108.064517
    [24]
    [25]
    [26]
    [27]
    [28]
    [29]
    [30]
    O. Moulding, S. Gallego-Parra, Y. Gao, P. Toulemonde, G. Garbarino et al., “Pressure-induced formation of cubic lutetium hydrides derived from trigonal LuH3,” Phys. Rev. B 108, 214505 (2023).10.1103/PhysRevB.108.214505
    [31]
    M. Tkacz and T. Palasyuk, “Pressure induced phase transformation of REH3,” J. Alloys Compd. 446-447, 593–597 (2007).10.1016/j.jallcom.2006.11.042
    [32]
    J. Hirsch, “Enormous variation in homogeneity and other anomalous features of room temperature superconductor samples: A comment on Nature 615, 244 (2023),” J. Supercond. Novel Magn. 36, 1489 (2023).10.1007/s10948-023-06593-6
    [33]
    D. Peng, Q. Zeng, F. Lan, Z. Xing, Y. Ding et al., “The near-room-temperature upsurge of electrical resistivity in Lu-H-N is not superconductivity, but a metal-to-poor-conductor transition,” Matter Radiat. Extremes 8, 058401 (2023).10.1063/5.0166430
    [34]
    S. Cai, J. Guo, H. Shu, L. Yang, P. Wang et al., “No evidence of superconductivity in a compressed sample prepared from lutetium foil and H2/N2 gas mixture,” Matter Radiat. Extremes 8, 048001 (2023).10.1063/5.0153447
    [35]
    N. Wang, J. Hou, Z. Liu, T. Lu, P. Shan et al., “Percolation-induced resistivity drop in lutetium dihydride with controllable electrical conductivity over six orders of magnitude,” Sci. China Phys., Mech. Astron. 66, 297412 (2023).10.1007/s11433-023-2171-8
    [36]
    H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/RevModPhys.90.015007
    [37]
    [38]
    [39]
    Z.-Y. Cao, H. Jang, S. Choi, J. Kim, S. Kim et al., “Spectroscopic evidence for the superconductivity of elemental metal Y under pressure,” NPG Asia Mater. 15, 5 (2023).10.1038/s41427-022-00457-6
    [40]
    K. J. Palm, J. B. Murray, T. C. Narayan, and J. N. Munday, “Dynamic optical properties of metal hydrides,” ACS Photonics 5, 4677–4686 (2018).10.1021/acsphotonics.8b01243
    [41]
    K. Ng, F. Zhang, V. Anisimov, and T. Rice, “Electronic structure of lanthanum hydrides with switchable optical properties,” Phys. Rev. Lett. 78, 1311 (1997).10.1103/physrevlett.78.1311
    [42]
    A. Van Gogh, E. S. Kooij, and R. Griessen, “Isotope effects in switchable metal-hydride mirrors,” Phys. Rev. Lett. 83, 4614 (1999).10.1103/physrevlett.83.4614
    [43]
    K. Ng, F. Zhang, V. Anisimov, and T. Rice, “Theory for metal hydrides with switchable optical properties,” Phys. Rev. B 59, 5398 (1999).10.1103/physrevb.59.5398
    [44]
    A. Remhof and A. Borgschulte, “Thin-film metal hydrides,” Chemphyschem 9, 2440–2455 (2008).10.1002/cphc.200800573
    [45]
    F. Den Broeder, S. Van der Molen, M. Kremers, J. Huiberts, D. Nagengast et al., “Visualization of hydrogen migration in solids using switchable mirrors,” Nature 394, 656–658 (1998).10.1038/29250
    [46]
    J. N. Huiberts, R. Griessen, J. Rector, R. Wijngaarden, J. Dekker et al., “Yttrium and lanthanum hydride films with switchable optical properties,” Nature 380, 231–234 (1996).10.1038/380231a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (43) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return