Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Yang Long, Rehwald Martin, Kluge Thomas, Laso Garcia Alejandro, Toncian Toma, Zeil Karl, Schramm Ulrich, Cowan Thomas E., Huang Lingen. Dynamic convergent shock compression initiated by return current in high-intensity laser–solid interactions[J]. Matter and Radiation at Extremes, 2024, 9(4): 047204. doi: 10.1063/5.0181321
Citation: Yang Long, Rehwald Martin, Kluge Thomas, Laso Garcia Alejandro, Toncian Toma, Zeil Karl, Schramm Ulrich, Cowan Thomas E., Huang Lingen. Dynamic convergent shock compression initiated by return current in high-intensity laser–solid interactions[J]. Matter and Radiation at Extremes, 2024, 9(4): 047204. doi: 10.1063/5.0181321

Dynamic convergent shock compression initiated by return current in high-intensity laser–solid interactions

doi: 10.1063/5.0181321
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yanglong@hzdr.de
  • Received Date: 2023-10-16
  • Accepted Date: 2024-05-16
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-01
  • We investigate the dynamics of convergent shock compression in solid cylindrical targets irradiated by an ultrafast relativistic laser pulse. Our particle-in-cell simulations and coupled hydrodynamic simulations reveal that the compression process is initiated by both magnetic pressure and surface ablation associated with a strong transient surface return current with density of the order of 1017 A/m2 and lifetime of 100 fs. The results show that the dominant compression mechanism is governed by the plasma β, i.e., the ratio of thermal pressure to magnetic pressure. For targets with small radius and low atomic number Z, the magnetic pressure is the dominant shock compression mechanism. According to a scaling law, as the target radius and Z increase, the surface ablation pressure becomes the main mechanism generating convergent shocks. Furthermore, an indirect experimental indication of shocked hydrogen compression is provided by optical shadowgraphy measurements of the evolution of the plasma expansion diameter. The results presented here provide a novel basis for the generation of extremely high pressures exceeding Gbar (100 TPa) to enable the investigation of high-pressure physics using femtosecond J-level laser pulses, offering an alternative to nanosecond kJ-laser pulse-driven and pulsed power Z-pinch compression methods.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Long Yang: Conceptualization (equal); Methodology (lead); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Martin Rehwald: Investigation (equal); Resources (equal); Writing – review & editing (equal). Thomas Kluge: Validation (equal); Writing – review & editing (equal). Alejandro Laso Garcia: Data curation (equal); Writing – review & editing (equal). Toma Toncian: Data curation (equal); Writing – review & editing (equal). Karl Zeil: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Ulrich Schramm: Resources (equal); Writing – review & editing (equal). Thomas E. Cowan: Resources (equal); Supervision (lead); Validation (equal); Writing – review & editing (equal). Lingen Huang: Resources (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal).
    L.Y. developed the theory. L.Y. and L.H. conducted the simulations. M.R., K.Z., and U.S. provided the experimental data. T.K., A.L., and T.T. analyzed the data. L.Y. wrote the publication. L.H. and T.E.C. supervised the project. All authors reviewed the manuscript.
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    G. Fowles, G. Duvall, J. Asay, P. Bellamy, F. Feistmann, D. Grady, T. Michaels, and R. Mitchell, “Gas gun for impact studies,” Rev. Sci. Instrum. 41, 984 (1970).10.1063/1.1684739
    [2]
    [3]
    T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
    [4]
    C. Deeney, M. Douglas, R. Spielman, T. Nash, D. Peterson, P. L’Eplattenier, G. Chandler, J. Seamen, and K. Struve, “Enhancement of x-ray power from a Z pinch using nested-wire arrays,” Phys. Rev. Lett 81, 4883 (1998).10.1103/physrevlett.81.4883
    [5]
    [6]
    X. B. Huang, X. D. Ren, J. K. Dan, K. L. Wang, Q. Xu, S. T. Zhou, S. Q. Zhang, H. C. Cai, J. Li, B. Wei et al., “Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility,” Phys. Plasmas 24, 092704 (2017).10.1063/1.4998619
    [7]
    S. Meng, F. Ye, Z. Xu, X. Yan, S. Jiang, J. Lu, Z. Huang, Q. Yi, F. Chen, R. Yang et al., “Visualizing magnetically driven converging radiative shock generated in Z-pinch foil liner implosion,” Phys. Plasmas 28, 122713 (2021).10.1063/5.0062379
    [8]
    J. Bailey, G. Chandler, S. Slutz, G. Bennett, G. Cooper, J. Lash, S. Lazier, R. Lemke, T. Nash, D. Nielsen et al., “X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum,” Phys. Rev. Lett. 89, 095004 (2002).10.1103/physrevlett.89.095004
    [9]
    G. A. Rochau, J. Bailey, Y. Maron, G. Chandler, G. Dunham, D. Fisher, V. Fisher, R. Lemke, J. MacFarlane, K. Peterson et al., “Radiating shock measurements in the Z-pinch dynamic hohlraum,” Phys. Rev. Lett. 100, 125004 (2008).10.1103/physrevlett.100.125004
    [10]
    E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des. 85, 983 (2010).10.1016/j.fusengdes.2009.11.006
    [11]
    M. L. Spaeth, K. Manes, D. Kalantar, P. Miller, J. Heebner, E. Bliss, D. Spec, T. Parham, P. Whitman, P. Wegner et al., “Description of the NIF laser,” Fusion Sci. Technol. 69, 25 (2016).10.13182/fst15-144
    [12]
    O. Hurricane, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden, P. Adrian, B. Afeyan, M. Aggleton, L. Aghaian et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/PhysRevLett.129.075001
    [13]
    S. Jiang, F. Wang, Y. Ding, S. Liu, J. Yang, S. Li, T. Huang, Z. Cao, Z. Yang, X. Hu et al., “Experimental progress of inertial confinement fusion based at the Shenguang-III laser facility in China,” Nucl. Fusion 59, 032006 (2018).10.1088/1741-4326/aabdb6
    [14]
    A. L. Kritcher, P. Neumayer, J. Castor, T. Döppner, R. W. Falcone, O. L. Landen, H. J. Lee, R. W. Lee, E. C. Morse, A. Ng et al., “Ultrafast x-ray Thomson scattering of shock-compressed matter,” Science 322, 69 (2008).10.1126/science.1161466
    [15]
    D. Bradley, J. Eggert, R. Smith, S. Prisbrey, D. Hicks, D. Braun, J. Biener, A. Hamza, R. Rudd, and G. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102, 075503 (2009).10.1103/physrevlett.102.075503
    [16]
    R. Lemke, M. Knudson, D. Bliss, K. Cochrane, J.-P. Davis, A. Giunta, H. Harjes, and S. Slutz, “Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments,” J. Appl. Phys. 98, 073530 (2005).10.1063/1.2084316
    [17]
    M. Knudson, M. Desjarlais, and D. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322, 1822 (2008).10.1126/science.1165278
    [18]
    S. Root, L. Shulenburger, R. W. Lemke, D. H. Dolan, T. R. Mattsson, and M. P. Desjarlais, “Shock response and phase transitions of MgO at planetary impact conditions,” Phys. Rev. Lett. 115, 198501 (2015).10.1103/physrevlett.115.198501
    [19]
    M. Knudson and M. Desjarlais, “Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime,” Phys. Rev. B 88, 184107 (2013).10.1103/physrevb.88.184107
    [20]
    N. Ozaki, W. Nellis, T. Mashimo, M. Ramzan, R. Ahuja, T. Kaewmaraya, T. Kimura, M. Knudson, K. Miyanishi, Y. Sakawa et al., “Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals,” Sci. Rep. 6, 26000 (2016).10.1038/srep26000
    [21]
    R. Kraus, J.-P. Davis, C. Seagle, D. Fratanduono, D. Swift, J. Brown, and J. Eggert, “Dynamic compression of copper to over 450 GPa: A high-pressure standard,” Phys. Rev. B 93, 134105 (2016).10.1103/physrevb.93.134105
    [22]
    M. D. Knudson, “Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments,” AIP Conf. Proc. 1426, 35 (2012).10.1063/1.3686216
    [23]
    C. Deeney, T. Nash, R. Spielman, J. Seaman, G. Chandler, K. Struve, J. Porter, W. Stygar, J. McGurn, D. Jobe et al., “Power enhancement by increasing the initial array radius and wire number of tungsten Z pinches,” Phys. Rev. E 56, 5945 (1997).10.1103/physreve.56.5945
    [24]
    R. Spielman, C. Deeney, G. Chandler, M. Douglas, D. Fehl, M. Matzen, D. McDaniel, T. Nash, J. Porter, T. Sanford et al., “Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ,” Phys. Plasmas 5, 2105 (1998).10.1063/1.872881
    [25]
    M. E. Cuneo, R. A. Vesey, J. L. Porter, Jr, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles et al., “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257 (2001).10.1063/1.1348328
    [26]
    G. A. Rochau, J. E. Bailey, G. A. Chandler, G. Cooper, G. Dunham, P. Lake, R. Leeper, R. Lemke, T. Mehlhorn, A. Nikroo et al., “High performance capsule implosions driven by the Z-pinch dynamic hohlraum,” Plasma Phys. Controlled Fusion 49, B591 (2007).10.1088/0741-3335/49/12b/s55
    [27]
    M. Haines, “A review of the dense Z-pinch,” Plasma Phys. Controlled Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001
    [28]
    P. Gibbon, “Efficient production of fast electrons from femtosecond laser interaction with solid targets,” Phys. Rev. Lett. 73, 664 (1994).10.1103/physrevlett.73.664
    [29]
    G. Malka and J. Miquel, “Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target,” Phys. Rev. Lett. 77, 75 (1996).10.1103/physrevlett.77.75
    [30]
    P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (World Scientific, 2005).
    [31]
    V. Kaymak, A. Pukhov, V. N. Shlyaptsev, and J. J. Rocca, “Nanoscale ultradense Z-pinch formation from laser-irradiated nanowire arrays,” Phys. Rev. Lett. 117, 035004 (2016).10.1103/physrevlett.117.035004
    [32]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [33]
    F. Beg, M. Wei, E. Clark, A. Dangor, R. Evans, P. Gibbon, A. Gopal, K. Lancaster, K. Ledingham, P. McKenna et al., “Return current and proton emission from short pulse laser interactions with wire targets,” Phys. Plasmas 11, 2806 (2004).10.1063/1.1704643
    [34]
    A. Hauer and R. Mason, “Return-current heating and implosion of cylindrical CO2-laser-driven targets,” Phys. Rev. Lett. 51, 459 (1983).10.1103/physrevlett.51.459
    [35]
    R. F. Benjamin, G. H. McCall, and A. W. Ehler, “Measurement of return current in a laser-produced plasma,” Phys. Rev. Lett. 42, 890 (1979).10.1103/physrevlett.42.890
    [36]
    A. Sandhu, A. Dharmadhikari, P. Rajeev, G. R. Kumar, S. Sengupta, A. Das, and P. Kaw, “Laser-generated ultrashort multimegagauss magnetic pulses in plasmas,” Phys. Rev. Lett. 89, 225002 (2002).10.1103/physrevlett.89.225002
    [37]
    J. Ong, P. Ghenuche, I. C. E. Turcu, A. Pukhov, and K. Tanaka, “Ultra-high-pressure generation in the relativistic transparency regime in laser-irradiated nanowire arrays,” Phys. Rev. E 107, 065208 (2023).10.1103/physreve.107.065208
    [38]
    F. Beg, E. Clark, M. Wei, A. Dangor, R. Evans, A. Gopal, K. Lancaster, K. Ledingham, P. McKenna, P. Norreys et al., “High-intensity-laser-driven Z pinches,” Phys. Rev. Lett 92, 095001 (2004).10.1103/physrevlett.92.095001
    [39]
    J.-P. Davis, C. Deeney, M. D. Knudson, R. W. Lemke, T. D. Pointon, and D. E. Bliss, “Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator,” Phys. Plasmas 12, 056310 (2005).10.1063/1.1871954
    [40]
    Z. Li, Z. Wang, R. Xu, J. Yang, F. Ye, Y. Chu, Z. Xu, F. Chen, S. Meng, J. Qi et al., “Experimental investigation of Z-pinch radiation source for indirect drive inertial confinement fusion,” Matter Radiat. Extremes 4, 046201 (2019).10.1063/1.5099088
    [41]
    Y. Zhang, U. Shumlak, B. Nelson, R. Golingo, T. Weber, A. Stepanov, E. Claveau, E. Forbes, Z. Draper, J. Mitrani et al., “Sustained neutron production from a sheared-flow stabilized z pinch,” Phys. Rev. Lett. 122, 135001 (2019).10.1103/physrevlett.122.135001
    [42]
    R. Wright, D. Pott, and M. Haines, “Stability considerations of a hot cylindrical pinch,” Plasma Phys. 18, 1 (1976).10.1088/0032-1028/18/1/001
    [43]
    G. L. Delzanno, E. G. Evstatiev, and J. M. Finn, “Resistive effects on line-tied magnetohydrodynamic modes in cylindrical geometry,” Phys. Plasmas 14, 092901 (2007).10.1063/1.2760206
    [44]
    G. L. Delzanno and J. M. Finn, “The effect of line-tying on tearing modes,” Phys. Plasmas 15, 032904 (2008).10.1063/1.2876666
    [45]
    M. Rehwald, Laser-proton Acceleration in the Near-Critical Regime Using Density Tailored Cryogenic Hydrogen Jets (Technische Universität Dresden, Dresden, 2022).
    [46]
    [47]
    M. Povarnitsyn, N. Andreev, P. Levashov, K. Khishchenko, and O. Rosmej, “Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams,” Phys. Plasmas 19, 023110 (2012).10.1063/1.3683687
    [48]
    M. E. Povarnitsyn, N. E. Andreev, P. R. Levashov, K. V. Khishchenko, D. A. Kim, V. G. Novikov, and O. N. Rosmej, “Laser irradiation of thin films: Effect of energy transformation,” Laser Part. Beams 31, 663 (2013).10.1017/s0263034613000700
    [49]
    N. Andreev, M. Povarnitsyn, M. Veysman, A. Y. Faenov, P. Levashov, K. Khishchenko, T. Pikuz, A. Magunov, O. Rosmej, A. Blazevic et al., “Interaction of annular-focused laser beams with solid targets,” Laser Part. Beams 33, 541 (2015).10.1017/s0263034615000580
    [50]
    [51]
    Y. Sentoku and A. J. Kemp, “Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents,” J. Comput. Phys. 227, 6846 (2008).10.1016/j.jcp.2008.03.043
    [52]
    [53]
    F. Pérez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre, “Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes,” Phys. Plasmas 19, 083104 (2012).10.1063/1.4742167
    [54]
    K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romagnani, G. Sarri, L. Lancia, J. Fuchs, A. Pipahl, T. Toncian, O. Willi, R. J. Clarke, D. Neely, M. Notley, P. Gallegos, D. C. Carroll, M. N. Quinn, X. H. Yuan, P. McKenna, T. V. Liseykina, A. Macchi, and M. Borghesi, “Laser-driven ultrafast field propagation on solid surfaces,” Phys. Rev. Lett. 102, 194801 (2009).10.1103/physrevlett.102.194801
    [55]
    L. Huang, M. Molodtsova, A. Ferrari, A. L. Garcia, T. Toncian, and T. Cowan, “Dynamics of hot refluxing electrons in ultra-short relativistic laser foil interactions,” Phys. Plasmas 29, 023102 (2022).10.1063/5.0077222
    [56]
    L. Yang, L. Huang, S. Assenbaum, T. E. Cowan, I. Goethel, S. Göde, T. Kluge, M. Rehwald, X. Pan, U. Schramm et al., “Time-resolved optical shadowgraphy of solid hydrogen jets as a testbed to benchmark particle-in-cell simulations,” Commun. Phys. 6, 368 (2023).10.1038/s42005-023-01473-w
    [57]
    A. J. Kemp, Y. Sentoku, V. Sotnikov, and S. Wilks, “Collisional relaxation of superthermal electrons generated by relativistic laser pulses in dense plasma,” Phys. Rev. Lett. 97, 235001 (2006).10.1103/physrevlett.97.235001
    [58]
    [59]
    [60]
    B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, “Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophys. J., Suppl. Ser. 131, 273 (2000).10.1086/317361
    [61]
    A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley, D. Sheeler, A. Siegel, and K. Weide, “Extensible component-based architecture for flash, a massively parallel, multiphysics simulation code,” Parallel Comput. 35, 512 (2009).10.1016/j.parco.2009.08.001
    [62]
    R. W. Lemke, M. D. Knudson, and J.-P. Davis, “Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator,” Int. J. Impact Eng 38, 480 (2011).10.1016/j.ijimpeng.2010.10.019
    [63]
    M. Kadatskiy and K. Khishchenko, “Theoretical investigation of the shock compressibility of copper in the average-atom approximation,” Phys. Plasmas 25, 112701 (2018).10.1063/1.5050248
    [64]
    C. E. Ragan III, “Shock-wave experiments at threefold compression,” Phys. Rev. A 29, 1391 (1984).10.1103/physreva.29.1391
    [65]
    E. N. Avrorin, B. Vodolaga, V. A. Simonenko, and V. E. Fortov, “Intense shock waves and extreme states of matter,” Phys.-Usp. 36, 337 (1993).10.1070/pu1993v036n05abeh002158
    [66]
    R. F. Trunin, “Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions,” Phys.-Usp. 37, 1123 (1994).10.1070/pu1994v037n11abeh000055
    [67]
    K. Guderley, “Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmitterpunktes bnw. der zylinderachse,” Luftfahrtforschung 19, 302 (1942).
    [68]
    K. Khishchenko, A. Charakhch’yan, V. Milyavskii, V. Fortov, A. Frolova, and L. Shurshalov, “Mechanism of amplification of convergent shock waves in porous media,” Russ. J. Phys. Chem. B 1, 612 (2007).10.1134/s1990793107060164
    [69]
    A. Charakhch’yan, K. Khishchenko, V. Fortov, A. Frolova, V. Milyavskiy, and L. Shurshalov, “Shock compression of some porous media in conical targets: Numerical study,” Shock Waves 21, 35 (2011).10.1007/s00193-010-0274-y
    [70]
    N. Y. Orlov, M. A. Kadatskiy, O. B. Denisov, and K. V. Khishchenko, “Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas,” Matter Radiat. Extremes 4, 054403 (2019).10.1063/1.5096439
    [71]
    D. Sinars, S. Slutz, M. Herrmann, R. McBride, M. Cuneo, K. Peterson, R. Vesey, C. Nakhleh, B. Blue, K. Killebrew et al., “Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility,” Phys. Rev. Lett. 105, 185001 (2010).10.1103/physrevlett.105.185001
    [72]
    M. Weis, P. Zhang, Y. Lau, P. Schmit, K. Peterson, M. Hess, and R. Gilgenbach, “Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner,” Phys. Plasmas 22, 032706 (2015).10.1063/1.4915520
    [73]
    C. Bernert, S. Assenbaum, F.-E. Brack, T. E. Cowan, C. B. Curry, M. Garten, L. Gaus, M. Gauthier, S. Göde, I. Goethel et al., “Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets,” Sci. Rep. 12, 7287 (2022).10.1038/s41598-022-10797-6
    [74]
    M. Rehwald, S. Assenbaum, C. Bernert, F.-E. Brack, M. Bussmann, T. E. Cowan, C. B. Curry, F. Fiuza, M. Garten, L. Gaus et al., “Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density,” Nat. Commun. 14, 4009 (2023).10.1038/s41467-023-39739-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (47) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return