Citation: | Cikhardt J., Gyrdymov M., Zähter S., Tavana P., Günther M. M., Bukharskii N., Borisenko N., Jacoby J., Shen X. F., Pukhov A., Andreev N. E., Rosmej O. N.. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9(2): 027201. doi: 10.1063/5.0181119 |
[1] |
S. Corde, K. Ta Phuoc, G. Lambert et al., “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1 (2013).10.1103/revmodphys.85.1
|
[2] |
F. Albert, N. Lemos, J. L. Shaw et al., “Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities,” Nucl. Fusion 59, 032003 (2019).10.1088/1741-4326/aad058
|
[3] |
D. C. Swift, A. L. Kritcher, J. A. Hawreliak et al., “Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography,” Rev. Sci. Instrum. 89, 053505 (2018).10.1063/1.5032142
|
[4] |
A. Ravasio, M. Koenig, S. Le Pape et al., “Hard x-ray radiography for density measurement in shock compressed matter,” Phys. Plasmas 15, 060701 (2008).10.1063/1.2928156
|
[5] |
J. C. Wood, D. J. Chapman, K. Poder et al., “Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator,” Sci. Rep. 8, 11010 (2018).10.1038/s41598-018-29347-0
|
[6] |
B. Mahieu, N. Jourdain, K. Ta Phuoc et al., “Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source,” Nat. Commun. 9, 3276 (2018).10.1038/s41467-018-05791-4
|
[7] |
J. M. Cole, J. C. Wood, N. C. Lopes et al., “Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone,” Sci. Rep. 5, 13244 (2015).10.1038/srep13244
|
[8] |
A. Döpp, L. Hehn, J. Götzfried et al., “Quick x-ray microtomography using a laser-driven betatron source,” Optica 5, 199–203 (2018).10.1364/optica.5.000199
|
[9] |
A. Rousse, K. T. Phuoc, R. Shah et al., “Production of a keV -ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93, 135005 (2004).10.1103/physrevlett.93.135005
|
[10] |
S. Kneip, C. McGuffey, F. Dollar et al., “X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator,” Appl. Phys. Lett. 99, 093701 (2011).10.1063/1.3627216
|
[11] |
V. Horny, J. Nejdl, M. Kozlova et al., “Temporal profile of betatron radiation from laser-driven electron accelerators,” Phys. Plasmas 24, 063107 (2017).10.1063/1.4985687
|
[12] |
A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).10.1063/1.873242
|
[13] |
A. Pukhov, “Strong field interaction of laser radiation,” Rep. Prog. Phys. 66, 47–101 (2003).10.1088/0034-4885/66/1/202
|
[14] |
S. Kneip, S. R. Nagel, C. Bellei et al., “Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity,” Phys. Rev. Lett. 100, 105006 (2008).10.1103/physrevlett.100.105006
|
[15] |
S. Fourmaux, S. Corde, K. T. Phuoc et al., “Single shot phase contrast imaging using laser-produced Betatron x-ray beams,” Opt. Lett. 36, 2426–2428 (2011).10.1364/ol.36.002426
|
[16] |
J. Ju, K. Svensson, A. Döpp et al., “Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes,” Appl. Phys. Lett. 100, 191106 (2012).10.1063/1.4712594
|
[17] |
S. Cipiccia, M. R. Islam, B. Ersfeld et al., “Gamma-rays from harmonically resonant betatron oscillations in a plasma wake,” Nat. Phys. 7, 867 (2011).10.1038/nphys2090
|
[18] |
M. Kozlova, I. Andriyash, J. Gautier et al., “Hard x rays from laser-wakefield accelerators in density tailored plasmas,” Phys. Rev. X 10, 011061 (2020).10.1103/physrevx.10.011061
|
[19] |
J. P. Couperus, R. Pausch, A. Köhler et al., “Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator,” Nat. Commun. 8, 487 (2017).10.1038/s41467-017-00592-7
|
[20] |
C. Aniculaesei, T. Ha, S. Yoffe et al., “The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator,” Matter Radiat. Extremes 9, 014001 (2024).10.1063/5.0161687
|
[21] |
J. Götzfried, A. Döpp, M. F. Gilljohann et al., “Physics of high-charge electron beams in laser-plasma wakefields,” Phys. Rev. X 10, 041015 (2020).10.1103/physrevx.10.041015
|
[22] |
J. Ferri, S. Corde, A. Döpp et al., “High-brilliance betatron γ-ray source powered by laser-accelerated electrons,” Phys. Rev. Lett. 120, 254802 (2018).10.1103/physrevlett.120.254802
|
[23] |
R. Rakowski, P. Zhang, K. Jensen et al., “Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation,” Sci. Rep. 12, 10855 (2022).10.1038/s41598-022-14748-z
|
[24] |
N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov et al., “Resonant excitation of wake-fields by a laser pulse in a plasma,” JETP Lett. 55, 571–576 (1992).
|
[25] |
N. E. Andreev, V. I. Kirsanov, L. M. Gorbunov et al., “Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator,” Phys. Plasmas 2(6), 2573–2582 (1995).10.1063/1.871219
|
[26] |
E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).10.1103/revmodphys.81.1229
|
[27] |
F. Albert, N. Lemos, J. L. Shaw et al., “Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses,” Phys. Rev. Lett. 118(13), 134801 (2017).10.1103/physrevlett.118.134801
|
[28] |
J. Ferri, X. Davoine, S. Y. Kalmykov, and A. Lifschitz, “Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions,” Phys. Rev. Accel. Beams 19, 101301 (2016).10.1103/physrevaccelbeams.19.101301
|
[29] |
A. Pukhov, “Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab),” J. Plasma Phys. 61(3), 425–433 (1999).10.1017/s0022377899007515
|
[30] |
B. Williamson, G. Xia, S. Gessner et al., “Betatron radiation diagnostics for AWAKE Run 2,” Nucl. Instrum. Methods Phys. Res., Sect. A 971, 164076 (2020).10.1016/j.nima.2020.164076
|
[31] |
X. F. Shen, A. Pukhov, M. M. Gunther, and O. N. Rosmej, “Bright betatron x-rays generation from picosecond laser interactions with long-scale near critical density plasmas,” Appl. Phys. Lett. 118, 134102 (2021).10.1063/5.0042997
|
[32] |
O. N. Rosmej, X. F. Shen, A. Pukhov et al., “Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity,” Matter Radiat. Extremes 6, 048401 (2021).10.1063/5.0042315
|
[33] |
R. Jung, J. Osterholz, K. Löwenbrück et al., “Study of electron-beam propagation through preionized dense foam plasmas,” Phys. Rev. Lett. 94, 195001 (2005).10.1103/physrevlett.94.195001
|
[34] |
L. Willingale, S. R. Nagel, A. G. R. Thomas et al., “Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams,” Phys. Rev. Lett. 102, 125002 (2009).10.1103/physrevlett.102.125002
|
[35] |
L. Willingale, P. M. Nilson, A. G. R. Thomas et al., “High-power, kilojoule laser interactions with near-critical density plasma,” Phys. Plasmas 18, 056706 (2011).10.1063/1.3563438
|
[36] |
L. Willingale, A. V. Arefiev, G. J. Williams et al., “The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas,” New J. Phys. 20, 093024 (2018).10.1088/1367-2630/aae034
|
[37] |
O. N. Rosmej, N. E. Andreev, S. Zaehter et al., “Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays,” New J. Phys. 21, 043044 (2019).10.1088/1367-2630/ab1047
|
[38] |
O. N. Rosmej, M. Gyrdymov, M. M. Günther et al., “High-current laser-driven beams of relativistic electrons for high energy density research,” Plasma Phys. Controlled Fusion 62, 115024 (2020).10.1088/1361-6587/abb24e
|
[39] |
M. Günther, O. N. Rosmej, P. Tavana et al., “Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science,” Nat. Commun. 13, 170 (2022).10.1038/s41467-021-27694-7
|
[40] |
P. Tavana, N. Bukharskii, M. Gyrdymov et al., “Ultra-high efficiency bremsstrahlung production in the interaction of direct laser-accelerated electrons with high-Z material,” Front. Phys. 11, 1178967 (2023).10.3389/fphy.2023.1178967
|
[41] |
L. P. Pugachev, N. E. Andreev, P. R. Levashov, and O. Rosmej, “Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 88–93 (2016).10.1016/j.nima.2016.02.053
|
[42] |
N. G. Borisenko, A. M. Khalenkov, V. Kmetik et al., “Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma,” Fusion Sci. Technol. 51, 655–664 (2007).10.13182/fst07-a1460
|
[43] |
V. Bagnoud, B. Aurand, A. Blazevic et al., “Commissioning and early experiments of the PHELIX facility,” Appl. Phys. B 100, 137–150 (2010).10.1007/s00340-009-3855-7
|
[44] |
P. A. Ross, “A new method of spectroscopy for faint X-radiations,” J. Opt. Soc. Am. 16, 433–437 (1928).10.1364/josa.16.000433
|
[45] |
P. Kirkpatrick, “On the theory and use of Ross filters,” Rev. Sci. Instrum. 10, 186–191 (1939).10.1063/1.1751523
|
[46] | |
[47] |
B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30 000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).10.1006/adnd.1993.1013
|
[48] | |
[49] | |
[50] |
K. S. Bell, C. A. Coverdale, D. J. Ampleford et al., “The differential absorption hard x-ray spectrometer at the Z facility,” IEEE Trans. Plasma Sci. 45, 2393–2398 (2017).10.1109/tps.2017.2723347
|
[51] |
G. Boutoux, D. Batani, F. Burgy et al., “Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the ‘PETawatt Aquitaine Laser,’” Rev. Sci. Instrum. 87, 043108 (2016).10.1063/1.4944863
|
[52] |
B. Kindler, E. Celik Ayik, A. Hübner et al., “Surface and thickness measurement in the Targetlab of GSI,” EPJ Web Conf. 229, 02002 (2020).10.1051/epjconf/202022902002
|
[53] |
V. Munzar, D. Klir, J. Cikhardt et al., “Investigation of magnetic fields in Z-pinches via multi-MeV proton deflectometry,” IEEE Trans. Plasma Sci. 46, 3891–3900 (2018).10.1109/tps.2018.2874207
|
[54] |
T. Bonnet, M. Comet, D. Denis-Petit et al., “Response functions of imaging plates to photons, electrons and 4He particles,” Rev. Sci. Instrum. 84, 103510 (2013).10.1063/1.4826084
|
[55] |
J. Sempau, E. Acosta, J. Baro et al., “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res., Sect. B 132, 377–390 (1997).10.1016/s0168-583x(97)00414-x
|
[56] |
B. R. Maddox, H. S. Park, B. A. Remington et al., Rev. Sci. Instrum. 82, 023111 (2011).10.1063/1.3531979
|
[57] |
W. Nakel, Phys. Rep. 243(6), 317–353 (1994).10.1016/0370-1573(94)00068-9
|
[58] |
E. Esarey, B. A. Shadwick, P. Catravas, and W. P. Leemans, “Synchrotron radiation from electron beams in plasma-focusing channels,” Phys. Rev. E 65, 056505 (2002).10.1103/physreve.65.056505
|
[59] |
S. Kneip, C. McGuffey, J. L. Martins et al., “Bright spatially coherent synchrotron X-rays from a table-top source,” Nat. Phys. 6, 980–983 (2010).10.1038/nphys1789
|
[60] |
S. Fourmaux, E. Hallin, U. Chaulagain et al., “Laser-based synchrotron X-ray radiation experimental scaling,” Opt. Express 28(3), 3147–3158 (2020).10.1364/oe.383818
|