Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Cikhardt J., Gyrdymov M., Zähter S., Tavana P., Günther M. M., Bukharskii N., Borisenko N., Jacoby J., Shen X. F., Pukhov A., Andreev N. E., Rosmej O. N.. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9(2): 027201. doi: 10.1063/5.0181119
Citation: Cikhardt J., Gyrdymov M., Zähter S., Tavana P., Günther M. M., Bukharskii N., Borisenko N., Jacoby J., Shen X. F., Pukhov A., Andreev N. E., Rosmej O. N.. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9(2): 027201. doi: 10.1063/5.0181119

Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density

doi: 10.1063/5.0181119
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: cikhajak@fel.cvut.cz
  • Received Date: 2023-10-14
  • Accepted Date: 2024-01-16
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativistic laser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In an experiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 1019 W/cm2 laser intensity. The spectrum of directed x-rays in the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0° and 10° to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 1013 photons/sr with energies >5 keV measured at 0° to the laser axis and a brilliance of 1021 photons s−1 mm−2 mrad−2 (0.1%BW)−1. The angular distribution of the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emission time, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laser facilities.
  • loading
  • [1]
    S. Corde, K. Ta Phuoc, G. Lambert et al., “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1 (2013).10.1103/revmodphys.85.1
    [2]
    F. Albert, N. Lemos, J. L. Shaw et al., “Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities,” Nucl. Fusion 59, 032003 (2019).10.1088/1741-4326/aad058
    [3]
    D. C. Swift, A. L. Kritcher, J. A. Hawreliak et al., “Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography,” Rev. Sci. Instrum. 89, 053505 (2018).10.1063/1.5032142
    [4]
    A. Ravasio, M. Koenig, S. Le Pape et al., “Hard x-ray radiography for density measurement in shock compressed matter,” Phys. Plasmas 15, 060701 (2008).10.1063/1.2928156
    [5]
    J. C. Wood, D. J. Chapman, K. Poder et al., “Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator,” Sci. Rep. 8, 11010 (2018).10.1038/s41598-018-29347-0
    [6]
    B. Mahieu, N. Jourdain, K. Ta Phuoc et al., “Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source,” Nat. Commun. 9, 3276 (2018).10.1038/s41467-018-05791-4
    [7]
    J. M. Cole, J. C. Wood, N. C. Lopes et al., “Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone,” Sci. Rep. 5, 13244 (2015).10.1038/srep13244
    [8]
    A. Döpp, L. Hehn, J. Götzfried et al., “Quick x-ray microtomography using a laser-driven betatron source,” Optica 5, 199–203 (2018).10.1364/optica.5.000199
    [9]
    A. Rousse, K. T. Phuoc, R. Shah et al., “Production of a keV -ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93, 135005 (2004).10.1103/physrevlett.93.135005
    [10]
    S. Kneip, C. McGuffey, F. Dollar et al., “X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator,” Appl. Phys. Lett. 99, 093701 (2011).10.1063/1.3627216
    [11]
    V. Horny, J. Nejdl, M. Kozlova et al., “Temporal profile of betatron radiation from laser-driven electron accelerators,” Phys. Plasmas 24, 063107 (2017).10.1063/1.4985687
    [12]
    A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6, 2847–2854 (1999).10.1063/1.873242
    [13]
    A. Pukhov, “Strong field interaction of laser radiation,” Rep. Prog. Phys. 66, 47–101 (2003).10.1088/0034-4885/66/1/202
    [14]
    S. Kneip, S. R. Nagel, C. Bellei et al., “Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity,” Phys. Rev. Lett. 100, 105006 (2008).10.1103/physrevlett.100.105006
    [15]
    S. Fourmaux, S. Corde, K. T. Phuoc et al., “Single shot phase contrast imaging using laser-produced Betatron x-ray beams,” Opt. Lett. 36, 2426–2428 (2011).10.1364/ol.36.002426
    [16]
    J. Ju, K. Svensson, A. Döpp et al., “Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes,” Appl. Phys. Lett. 100, 191106 (2012).10.1063/1.4712594
    [17]
    S. Cipiccia, M. R. Islam, B. Ersfeld et al., “Gamma-rays from harmonically resonant betatron oscillations in a plasma wake,” Nat. Phys. 7, 867 (2011).10.1038/nphys2090
    [18]
    M. Kozlova, I. Andriyash, J. Gautier et al., “Hard x rays from laser-wakefield accelerators in density tailored plasmas,” Phys. Rev. X 10, 011061 (2020).10.1103/physrevx.10.011061
    [19]
    J. P. Couperus, R. Pausch, A. Köhler et al., “Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator,” Nat. Commun. 8, 487 (2017).10.1038/s41467-017-00592-7
    [20]
    C. Aniculaesei, T. Ha, S. Yoffe et al., “The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator,” Matter Radiat. Extremes 9, 014001 (2024).10.1063/5.0161687
    [21]
    J. Götzfried, A. Döpp, M. F. Gilljohann et al., “Physics of high-charge electron beams in laser-plasma wakefields,” Phys. Rev. X 10, 041015 (2020).10.1103/physrevx.10.041015
    [22]
    J. Ferri, S. Corde, A. Döpp et al., “High-brilliance betatron γ-ray source powered by laser-accelerated electrons,” Phys. Rev. Lett. 120, 254802 (2018).10.1103/physrevlett.120.254802
    [23]
    R. Rakowski, P. Zhang, K. Jensen et al., “Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation,” Sci. Rep. 12, 10855 (2022).10.1038/s41598-022-14748-z
    [24]
    N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov et al., “Resonant excitation of wake-fields by a laser pulse in a plasma,” JETP Lett. 55, 571–576 (1992).
    [25]
    N. E. Andreev, V. I. Kirsanov, L. M. Gorbunov et al., “Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator,” Phys. Plasmas 2(6), 2573–2582 (1995).10.1063/1.871219
    [26]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).10.1103/revmodphys.81.1229
    [27]
    F. Albert, N. Lemos, J. L. Shaw et al., “Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses,” Phys. Rev. Lett. 118(13), 134801 (2017).10.1103/physrevlett.118.134801
    [28]
    J. Ferri, X. Davoine, S. Y. Kalmykov, and A. Lifschitz, “Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions,” Phys. Rev. Accel. Beams 19, 101301 (2016).10.1103/physrevaccelbeams.19.101301
    [29]
    A. Pukhov, “Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab),” J. Plasma Phys. 61(3), 425–433 (1999).10.1017/s0022377899007515
    [30]
    B. Williamson, G. Xia, S. Gessner et al., “Betatron radiation diagnostics for AWAKE Run 2,” Nucl. Instrum. Methods Phys. Res., Sect. A 971, 164076 (2020).10.1016/j.nima.2020.164076
    [31]
    X. F. Shen, A. Pukhov, M. M. Gunther, and O. N. Rosmej, “Bright betatron x-rays generation from picosecond laser interactions with long-scale near critical density plasmas,” Appl. Phys. Lett. 118, 134102 (2021).10.1063/5.0042997
    [32]
    O. N. Rosmej, X. F. Shen, A. Pukhov et al., “Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity,” Matter Radiat. Extremes 6, 048401 (2021).10.1063/5.0042315
    [33]
    R. Jung, J. Osterholz, K. Löwenbrück et al., “Study of electron-beam propagation through preionized dense foam plasmas,” Phys. Rev. Lett. 94, 195001 (2005).10.1103/physrevlett.94.195001
    [34]
    L. Willingale, S. R. Nagel, A. G. R. Thomas et al., “Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams,” Phys. Rev. Lett. 102, 125002 (2009).10.1103/physrevlett.102.125002
    [35]
    L. Willingale, P. M. Nilson, A. G. R. Thomas et al., “High-power, kilojoule laser interactions with near-critical density plasma,” Phys. Plasmas 18, 056706 (2011).10.1063/1.3563438
    [36]
    L. Willingale, A. V. Arefiev, G. J. Williams et al., “The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas,” New J. Phys. 20, 093024 (2018).10.1088/1367-2630/aae034
    [37]
    O. N. Rosmej, N. E. Andreev, S. Zaehter et al., “Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays,” New J. Phys. 21, 043044 (2019).10.1088/1367-2630/ab1047
    [38]
    O. N. Rosmej, M. Gyrdymov, M. M. Günther et al., “High-current laser-driven beams of relativistic electrons for high energy density research,” Plasma Phys. Controlled Fusion 62, 115024 (2020).10.1088/1361-6587/abb24e
    [39]
    M. Günther, O. N. Rosmej, P. Tavana et al., “Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science,” Nat. Commun. 13, 170 (2022).10.1038/s41467-021-27694-7
    [40]
    P. Tavana, N. Bukharskii, M. Gyrdymov et al., “Ultra-high efficiency bremsstrahlung production in the interaction of direct laser-accelerated electrons with high-Z material,” Front. Phys. 11, 1178967 (2023).10.3389/fphy.2023.1178967
    [41]
    L. P. Pugachev, N. E. Andreev, P. R. Levashov, and O. Rosmej, “Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 88–93 (2016).10.1016/j.nima.2016.02.053
    [42]
    N. G. Borisenko, A. M. Khalenkov, V. Kmetik et al., “Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma,” Fusion Sci. Technol. 51, 655–664 (2007).10.13182/fst07-a1460
    [43]
    V. Bagnoud, B. Aurand, A. Blazevic et al., “Commissioning and early experiments of the PHELIX facility,” Appl. Phys. B 100, 137–150 (2010).10.1007/s00340-009-3855-7
    [44]
    P. A. Ross, “A new method of spectroscopy for faint X-radiations,” J. Opt. Soc. Am. 16, 433–437 (1928).10.1364/josa.16.000433
    [45]
    P. Kirkpatrick, “On the theory and use of Ross filters,” Rev. Sci. Instrum. 10, 186–191 (1939).10.1063/1.1751523
    [46]
    [47]
    B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30 000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).10.1006/adnd.1993.1013
    [48]
    [49]
    [50]
    K. S. Bell, C. A. Coverdale, D. J. Ampleford et al., “The differential absorption hard x-ray spectrometer at the Z facility,” IEEE Trans. Plasma Sci. 45, 2393–2398 (2017).10.1109/tps.2017.2723347
    [51]
    G. Boutoux, D. Batani, F. Burgy et al., “Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the ‘PETawatt Aquitaine Laser,’” Rev. Sci. Instrum. 87, 043108 (2016).10.1063/1.4944863
    [52]
    B. Kindler, E. Celik Ayik, A. Hübner et al., “Surface and thickness measurement in the Targetlab of GSI,” EPJ Web Conf. 229, 02002 (2020).10.1051/epjconf/202022902002
    [53]
    V. Munzar, D. Klir, J. Cikhardt et al., “Investigation of magnetic fields in Z-pinches via multi-MeV proton deflectometry,” IEEE Trans. Plasma Sci. 46, 3891–3900 (2018).10.1109/tps.2018.2874207
    [54]
    T. Bonnet, M. Comet, D. Denis-Petit et al., “Response functions of imaging plates to photons, electrons and 4He particles,” Rev. Sci. Instrum. 84, 103510 (2013).10.1063/1.4826084
    [55]
    J. Sempau, E. Acosta, J. Baro et al., “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res., Sect. B 132, 377–390 (1997).10.1016/s0168-583x(97)00414-x
    [56]
    B. R. Maddox, H. S. Park, B. A. Remington et al., Rev. Sci. Instrum. 82, 023111 (2011).10.1063/1.3531979
    [57]
    W. Nakel, Phys. Rep. 243(6), 317–353 (1994).10.1016/0370-1573(94)00068-9
    [58]
    E. Esarey, B. A. Shadwick, P. Catravas, and W. P. Leemans, “Synchrotron radiation from electron beams in plasma-focusing channels,” Phys. Rev. E 65, 056505 (2002).10.1103/physreve.65.056505
    [59]
    S. Kneip, C. McGuffey, J. L. Martins et al., “Bright spatially coherent synchrotron X-rays from a table-top source,” Nat. Phys. 6, 980–983 (2010).10.1038/nphys1789
    [60]
    S. Fourmaux, E. Hallin, U. Chaulagain et al., “Laser-based synchrotron X-ray radiation experimental scaling,” Opt. Express 28(3), 3147–3158 (2020).10.1364/oe.383818
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (56) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return