Citation: | Wu Yuchi, Wang Shaoyi, Zhu Bin, Yan Yonghong, Yu Minghai, Li Gang, Zhang Xiaohui, Yang Yue, Tan Fang, Lu Feng, Bi Bi, Mao Xiaoqin, Wang Zhonghai, Zhao Zongqing, Su Jingqin, Zhou Weimin, Gu Yuqiu. Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging[J]. Matter and Radiation at Extremes, 2024, 9(3): 037202. doi: 10.1063/5.0179781 |
[1] |
G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part 1. Description of system,” Br. J. Radiol. 46, 1016–1022 (1973).10.1259/0007-1285-46-552-1016
|
[2] |
L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, and A. Weckenmann, “Industrial applications of computed tomography,” CIRP Ann. 63, 655–677 (2014).10.1016/j.cirp.2014.05.011
|
[3] |
E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mater. Rev. 59, 1–43 (2014).10.1179/1743280413y.0000000023
|
[4] |
E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng. 13, 531–552 (2011).10.1146/annurev-bioeng-071910-124717
|
[5] |
T. Kanamori, S. Kamata, and S. Ito, “Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator,” J. Nucl. Sci. Technol. 26, 826–832 (1989).10.3327/jnst.26.826
|
[6] |
K. Katsuyama, T. Nagamine, S. I. Matsumoto, and S. Sato, “High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 365–372 (2007).10.1016/j.nimb.2006.12.087
|
[7] |
D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).10.1016/0030-4018(85)90120-8
|
[8] |
C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. X. Li, Y. T. Li, J. Limpert, J. G. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. J. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Q. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
|
[9] |
T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
|
[10] |
V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).10.1063/1.3695389
|
[11] |
S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).10.1038/nphoton.2013.234
|
[12] |
W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002
|
[13] |
T. Tajima, X. Q. Yan, and T. Ebisuzaki, “Wakefield acceleration,” Rev. Mod. Plasma Phys. 4, 7 (2020).10.1007/s41614-020-0043-z
|
[14] |
S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1 (2013).10.1103/revmodphys.85.1
|
[15] |
F. Albert and A. G. R. Thomas, “Applications of laser wakefield accelerator-based light sources,” Plasma Phys. Controlled Fusion 58, 103001 (2016).10.1088/0741-3335/58/10/103001
|
[16] |
W. T. Wang, K. Feng, L. T. Ke, C. H. Yu, Y. Xu, R. Qi, Y. Chen, Z. Y. Qin, Z. J. Zhang, M. Fang, J. Q. Liu, K. N. Jiang, H. Wang, C. Wang, X. J. Yang, F. X. Wu, Y. X. Leng, J. S. Liu, R. X. Li, and Z. Z. Xu, “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x.
|
[17] |
Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High-resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2005).10.1103/physrevlett.94.025003
|
[18] |
A. Ben-Ismaïl, O. Lundh, C. Rechatin, J. K. Lim, J. Faure, S. Corde, and V. Malka, “Compact and high-quality gamma-ray source applied to 10 μm-range resolution radiography,” Appl. Phys. Lett. 98, 264101 (2011).10.1063/1.3604013
|
[19] |
K. G. Dong, T. K. Zhang, M. H. Yu, Y. C. Wu, B. Zhu, F. Tan, S. Y. Wang, Y. H. Yan, J. Yang, Y. Yang, F. Lu, G. Li, W. Fan, W. Hong, Z. Q. Zhao, W. M. Zhou, L. F. Cao, and Y. Q. Gu, “Micro-spot gamma-ray generation based on laser wakefield acceleration,” J. Appl. Phys. 123, 243301 (2018).10.1063/1.4997142
|
[20] |
X. L. Zhu, M. Chen, S. M. Weng, T. P. Yu, W. M. Wang, F. He, Z. M. Sheng, P. Mckenna, D. A. Jaroszynski, and J. Zhang, “Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator,” Sci. Adv. 6, eaaz7240 (2020).10.1126/sciadv.aaz7240
|
[21] |
R. D. Edwards, M. A. Sinclair, T. J. Goldsack et al., “Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography,” Appl. Phys. Lett. 80, 2129 (2002).10.1063/1.1464221
|
[22] |
C. Courtois, R. Edwards, A. Compant La Fontaine, C. Aedy, M. Barbotin, S. Bazzoli, L. Biddle, D. Brebion, J. L. Bourgade, D. Drew, M. Fox, M. Gardner, J. Gazave, J. M. Lagrange, O. Landoas, L. Le Dain, E. Lefebvre, D. Mastrosimone, N. Pichoff, G. Pien, M. Ramsay, A. Simons, N. Sircombe, C. Stoeckl, and K. Thorp, “High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction,” Phys. Plasmas 18, 023101 (2011).10.1063/1.3551738
|
[23] |
Y. C. Wu, Z. Q. Zhao, B. Zhu, K. G. Dong, X. L. Wen, Y. L. He, Y. Q. Gu, and B. H. Zhang, “Laser wakefield electron acceleration for γ-ray radiography application,” Chin. Opt. Lett 10, 063501 (2012).10.3788/col201210.063501.
|
[24] |
C. Courtois, R. Edwards, A. Compant La Fontaine, C. Aedy, S. Bazzoli, J. L. Bourgade, J. Gazave, J. M. Lagrange, O. Landoas, L. L. Dain, D. Mastrosimone, N. Pichoff, G. Pien, and C. Stoeckl, “Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography,” Phys. Plasmas 20, 083114 (2013).10.1063/1.4818505
|
[25] |
C. I. D. Underwood, C. D. Baird, C. D. Murphy, C. D. Armstrong, C. Thornton, O. J. Finlay, M. J. V. Streeter, M. P. Selwood, N. Brierley, S. Cipiccia, J.-N. Gruse, P. McKenna, Z. Najmudin, D. Neely, D. Rusby, D. R. Symes, and C. M. Brenner, “Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging,” Plasma Phys. Controlled Fusion 62, 124002 (2020).10.1088/1361-6587/abbebe
|
[26] |
Y. C. Wu, B. Zhu, G. Li, X. H. Zhang, M. H. Yu, K. G. Dong, T. K. Zhang, Y. Yang, B. Bi, J. Yang, Y. H. Yan, F. Tan, W. Fan, F. Lu, S. Y. Wang, Z. Q. Zhao, W. M. Zhou, L. F. Cao, and Y. Q. Gu, “Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source,” Sci. Rep. 8, 15888 (2018).10.1038/s41598-018-33844-7
|
[27] |
Y. Yang, Y. C. Wu, L. Li, S. Y. Zhang, K. G. Dong, T. K. Zhang, M. H. Yu, X. H. Zhang, B. Zhu, F. Tan, Y. H. Yan, G. Li, W. Fan, F. Lu, Z. Q. Zhao, W. M. Zhou, L. F. Cao, and Y. Q. Gu, “Design and characterization of high energy micro-CT with a laser-based X-ray source,” Results Phys. 14, 102382 (2019).10.1016/j.rinp.2019.102382
|
[28] |
Z. Tian-Kui, Y. Ming-Hai, D. Ke-Gong, W. Yu-Chi, Y. Jing, C. Jia, L. Feng, L. Gang, Z. Bin, T. Fang, W. Shao-Yi, Y. Yong-Hong, and G. Yu-Qiu, “Detector characterization and electron effect for laser-driven high energy X-ray imaging,” Acta Phys. Sin. 66, 245201 (2017).10.7498/aps.66.245201
|
[29] | |
[30] |
W. A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Application, 3rd ed. (Publicis, Erlangen, 2011).
|
[31] | |
[32] |
S. Agostinelli et al., “GEANT4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/s0168-9002(03)01368-8
|
[33] |
J. Allison et al., “Recent developments in GEANT4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).10.1016/j.nima.2016.06.125
|
[34] |
X. Miao-Hua, C. Li-Ming, L. Yu-Tong, Y. Xiao-Hui, L. Yun-Quan, K. Nakajima, T. Tajima, W. Zhao-Hua, W. Zhi-Yi, Z. Wei, and Z. Jie, “Experimental study on Kα X-ray emission from intense femtosecond laser-solid interactions,” Acta Phys. Sin. 56, 353 (2007).10.7498/aps.56.353
|
[35] |
S. Jiang-Jun, L. Jun, L. Jin, and L. Bi-Yong, “Edge method for measuring source spot-size and its principle,” Chin. Phys. 16, 266 (2007).10.1088/1009-1963/16/1/045
|
[36] |
P. Marmier and E. Sheldon, Physics of Nuclei and Particles (Academic, 1969).
|
[37] |
B. Rossi, High-Energy Particles (Prentice-Hall, 1952).
|
[38] |
W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, “High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control,” Phys. Rev. Lett. 117, 124801 (2016).10.1103/physrevlett.117.124801
|
[39] |
A. R. Maier, N. M. Delbos, T. Eichner, L. Hübner, S. Jalas, L. Jeppe, S. W. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. A. Walker, C. Werle, and P. Winkler, “Decoding sources of energy variability in a laser-plasma accelerator,” Phys. Rev. X 10, 031039 (2020).10.1103/physrevx.10.031039
|
[40] |
C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, “Ionization induced trapping in a laser wakefield accelerator,” Phys. Rev. Lett. 104, 025004 (2010).10.1103/physrevlett.104.025004
|
[41] |
A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/physrevlett.104.025003
|
[42] |
T. Li, H. Feng, and Z. Xu, “A new analytical edge spread function fitting model for modulation transfer function measurement,” Chin. Opt. Lett. 9, 031101 (2011).10.3788/col20110903.031101
|
[43] |
A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34, 1808–1817 (1995).10.1117/12.203133
|