Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Wu Yuchi, Wang Shaoyi, Zhu Bin, Yan Yonghong, Yu Minghai, Li Gang, Zhang Xiaohui, Yang Yue, Tan Fang, Lu Feng, Bi Bi, Mao Xiaoqin, Wang Zhonghai, Zhao Zongqing, Su Jingqin, Zhou Weimin, Gu Yuqiu. Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging[J]. Matter and Radiation at Extremes, 2024, 9(3): 037202. doi: 10.1063/5.0179781
Citation: Wu Yuchi, Wang Shaoyi, Zhu Bin, Yan Yonghong, Yu Minghai, Li Gang, Zhang Xiaohui, Yang Yue, Tan Fang, Lu Feng, Bi Bi, Mao Xiaoqin, Wang Zhonghai, Zhao Zongqing, Su Jingqin, Zhou Weimin, Gu Yuqiu. Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging[J]. Matter and Radiation at Extremes, 2024, 9(3): 037202. doi: 10.1063/5.0179781

Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging

doi: 10.1063/5.0179781
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yqgu@caep.cn
  • Received Date: 2023-10-04
  • Accepted Date: 2024-02-03
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing (NDT) tool in various fields. For high-energy photons, point projection radiography is almost the only feasible imaging method, and its spatial resolution is primarily constrained by the size of the gamma-ray source. In conventional industrial applications, gamma-ray sources are commonly based on electron beams driven by accelerators, utilizing the process of bremsstrahlung radiation. The size of the gamma-ray source is dependent on the dimensional characteristics of the electron beam. Extensive research has been conducted on various advanced accelerator technologies that have the potential to greatly improve spatial resolution in NDT. In our investigation of laser-driven gamma-ray sources, a spatial resolution of about 90 µm is achieved when the areal density of the penetrated object is 120 g/cm2. A virtual source approach is proposed to optimize the size of the gamma-ray source used for imaging, with the aim of maximizing spatial resolution. In this virtual source approach, the gamma ray can be considered as being emitted from a virtual source within the convertor, where the equivalent gamma-ray source size in imaging is much smaller than the actual emission area. On the basis of Monte Carlo simulations, we derive a set of evaluation formulas for virtual source scale and gamma-ray emission angle. Under optimal conditions, the virtual source size can be as small as 15 µm, which can significantly improve the spatial resolution of high-penetration imaging to less than 50 µm.
  • loading
  • [1]
    G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part 1. Description of system,” Br. J. Radiol. 46, 1016–1022 (1973).10.1259/0007-1285-46-552-1016
    [2]
    L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, and A. Weckenmann, “Industrial applications of computed tomography,” CIRP Ann. 63, 655–677 (2014).10.1016/j.cirp.2014.05.011
    [3]
    E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mater. Rev. 59, 1–43 (2014).10.1179/1743280413y.0000000023
    [4]
    E. L. Ritman, “Current status of developments and applications of micro-CT,” Annu. Rev. Biomed. Eng. 13, 531–552 (2011).10.1146/annurev-bioeng-071910-124717
    [5]
    T. Kanamori, S. Kamata, and S. Ito, “Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator,” J. Nucl. Sci. Technol. 26, 826–832 (1989).10.3327/jnst.26.826
    [6]
    K. Katsuyama, T. Nagamine, S. I. Matsumoto, and S. Sato, “High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies,” Nucl. Instrum. Methods Phys. Res., Sect. B 255, 365–372 (2007).10.1016/j.nimb.2006.12.087
    [7]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).10.1016/0030-4018(85)90120-8
    [8]
    C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. X. Li, Y. T. Li, J. Limpert, J. G. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. J. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Q. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36
    [9]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267
    [10]
    V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).10.1063/1.3695389
    [11]
    S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).10.1038/nphoton.2013.234
    [12]
    W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002
    [13]
    T. Tajima, X. Q. Yan, and T. Ebisuzaki, “Wakefield acceleration,” Rev. Mod. Plasma Phys. 4, 7 (2020).10.1007/s41614-020-0043-z
    [14]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Rev. Mod. Phys. 85, 1 (2013).10.1103/revmodphys.85.1
    [15]
    F. Albert and A. G. R. Thomas, “Applications of laser wakefield accelerator-based light sources,” Plasma Phys. Controlled Fusion 58, 103001 (2016).10.1088/0741-3335/58/10/103001
    [16]
    W. T. Wang, K. Feng, L. T. Ke, C. H. Yu, Y. Xu, R. Qi, Y. Chen, Z. Y. Qin, Z. J. Zhang, M. Fang, J. Q. Liu, K. N. Jiang, H. Wang, C. Wang, X. J. Yang, F. X. Wu, Y. X. Leng, J. S. Liu, R. X. Li, and Z. Z. Xu, “Free-electron lasing at 27 nanometres based on a laser wakefield accelerator,” Nature 595, 516–520 (2021).10.1038/s41586-021-03678-x.
    [17]
    Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High-resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2005).10.1103/physrevlett.94.025003
    [18]
    A. Ben-Ismaïl, O. Lundh, C. Rechatin, J. K. Lim, J. Faure, S. Corde, and V. Malka, “Compact and high-quality gamma-ray source applied to 10 μm-range resolution radiography,” Appl. Phys. Lett. 98, 264101 (2011).10.1063/1.3604013
    [19]
    K. G. Dong, T. K. Zhang, M. H. Yu, Y. C. Wu, B. Zhu, F. Tan, S. Y. Wang, Y. H. Yan, J. Yang, Y. Yang, F. Lu, G. Li, W. Fan, W. Hong, Z. Q. Zhao, W. M. Zhou, L. F. Cao, and Y. Q. Gu, “Micro-spot gamma-ray generation based on laser wakefield acceleration,” J. Appl. Phys. 123, 243301 (2018).10.1063/1.4997142
    [20]
    X. L. Zhu, M. Chen, S. M. Weng, T. P. Yu, W. M. Wang, F. He, Z. M. Sheng, P. Mckenna, D. A. Jaroszynski, and J. Zhang, “Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator,” Sci. Adv. 6, eaaz7240 (2020).10.1126/sciadv.aaz7240
    [21]
    R. D. Edwards, M. A. Sinclair, T. J. Goldsack et al., “Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography,” Appl. Phys. Lett. 80, 2129 (2002).10.1063/1.1464221
    [22]
    C. Courtois, R. Edwards, A. Compant La Fontaine, C. Aedy, M. Barbotin, S. Bazzoli, L. Biddle, D. Brebion, J. L. Bourgade, D. Drew, M. Fox, M. Gardner, J. Gazave, J. M. Lagrange, O. Landoas, L. Le Dain, E. Lefebvre, D. Mastrosimone, N. Pichoff, G. Pien, M. Ramsay, A. Simons, N. Sircombe, C. Stoeckl, and K. Thorp, “High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction,” Phys. Plasmas 18, 023101 (2011).10.1063/1.3551738
    [23]
    Y. C. Wu, Z. Q. Zhao, B. Zhu, K. G. Dong, X. L. Wen, Y. L. He, Y. Q. Gu, and B. H. Zhang, “Laser wakefield electron acceleration for γ-ray radiography application,” Chin. Opt. Lett 10, 063501 (2012).10.3788/col201210.063501.
    [24]
    C. Courtois, R. Edwards, A. Compant La Fontaine, C. Aedy, S. Bazzoli, J. L. Bourgade, J. Gazave, J. M. Lagrange, O. Landoas, L. L. Dain, D. Mastrosimone, N. Pichoff, G. Pien, and C. Stoeckl, “Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography,” Phys. Plasmas 20, 083114 (2013).10.1063/1.4818505
    [25]
    C. I. D. Underwood, C. D. Baird, C. D. Murphy, C. D. Armstrong, C. Thornton, O. J. Finlay, M. J. V. Streeter, M. P. Selwood, N. Brierley, S. Cipiccia, J.-N. Gruse, P. McKenna, Z. Najmudin, D. Neely, D. Rusby, D. R. Symes, and C. M. Brenner, “Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging,” Plasma Phys. Controlled Fusion 62, 124002 (2020).10.1088/1361-6587/abbebe
    [26]
    Y. C. Wu, B. Zhu, G. Li, X. H. Zhang, M. H. Yu, K. G. Dong, T. K. Zhang, Y. Yang, B. Bi, J. Yang, Y. H. Yan, F. Tan, W. Fan, F. Lu, S. Y. Wang, Z. Q. Zhao, W. M. Zhou, L. F. Cao, and Y. Q. Gu, “Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source,” Sci. Rep. 8, 15888 (2018).10.1038/s41598-018-33844-7
    [27]
    Y. Yang, Y. C. Wu, L. Li, S. Y. Zhang, K. G. Dong, T. K. Zhang, M. H. Yu, X. H. Zhang, B. Zhu, F. Tan, Y. H. Yan, G. Li, W. Fan, F. Lu, Z. Q. Zhao, W. M. Zhou, L. F. Cao, and Y. Q. Gu, “Design and characterization of high energy micro-CT with a laser-based X-ray source,” Results Phys. 14, 102382 (2019).10.1016/j.rinp.2019.102382
    [28]
    Z. Tian-Kui, Y. Ming-Hai, D. Ke-Gong, W. Yu-Chi, Y. Jing, C. Jia, L. Feng, L. Gang, Z. Bin, T. Fang, W. Shao-Yi, Y. Yong-Hong, and G. Yu-Qiu, “Detector characterization and electron effect for laser-driven high energy X-ray imaging,” Acta Phys. Sin. 66, 245201 (2017).10.7498/aps.66.245201
    [29]
    [30]
    W. A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Application, 3rd ed. (Publicis, Erlangen, 2011).
    [31]
    [32]
    S. Agostinelli et al., “GEANT4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/s0168-9002(03)01368-8
    [33]
    J. Allison et al., “Recent developments in GEANT4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).10.1016/j.nima.2016.06.125
    [34]
    X. Miao-Hua, C. Li-Ming, L. Yu-Tong, Y. Xiao-Hui, L. Yun-Quan, K. Nakajima, T. Tajima, W. Zhao-Hua, W. Zhi-Yi, Z. Wei, and Z. Jie, “Experimental study on Kα X-ray emission from intense femtosecond laser-solid interactions,” Acta Phys. Sin. 56, 353 (2007).10.7498/aps.56.353
    [35]
    S. Jiang-Jun, L. Jun, L. Jin, and L. Bi-Yong, “Edge method for measuring source spot-size and its principle,” Chin. Phys. 16, 266 (2007).10.1088/1009-1963/16/1/045
    [36]
    P. Marmier and E. Sheldon, Physics of Nuclei and Particles (Academic, 1969).
    [37]
    B. Rossi, High-Energy Particles (Prentice-Hall, 1952).
    [38]
    W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H. Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X. Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, “High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control,” Phys. Rev. Lett. 117, 124801 (2016).10.1103/physrevlett.117.124801
    [39]
    A. R. Maier, N. M. Delbos, T. Eichner, L. Hübner, S. Jalas, L. Jeppe, S. W. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P. A. Walker, C. Werle, and P. Winkler, “Decoding sources of energy variability in a laser-plasma accelerator,” Phys. Rev. X 10, 031039 (2020).10.1103/physrevx.10.031039
    [40]
    C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, “Ionization induced trapping in a laser wakefield accelerator,” Phys. Rev. Lett. 104, 025004 (2010).10.1103/physrevlett.104.025004
    [41]
    A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104, 025003 (2010).10.1103/physrevlett.104.025003
    [42]
    T. Li, H. Feng, and Z. Xu, “A new analytical edge spread function fitting model for modulation transfer function measurement,” Chin. Opt. Lett. 9, 031101 (2011).10.3788/col20110903.031101
    [43]
    A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34, 1808–1817 (1995).10.1117/12.203133
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (85) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return