Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Marquès J.-R., Lancia L., Loiseau P., Forestier-Colleoni P., Tarisien M., Atukpor E., Bagnoud V., Brabetz C., Consoli F., Domange J., Hannachi F., Nicolaï P., Salvadori M., Zielbauer B.. Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves[J]. Matter and Radiation at Extremes, 2024, 9(2): 024001. doi: 10.1063/5.0178253
Citation: Marquès J.-R., Lancia L., Loiseau P., Forestier-Colleoni P., Tarisien M., Atukpor E., Bagnoud V., Brabetz C., Consoli F., Domange J., Hannachi F., Nicolaï P., Salvadori M., Zielbauer B.. Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves[J]. Matter and Radiation at Extremes, 2024, 9(2): 024001. doi: 10.1063/5.0178253

Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves

doi: 10.1063/5.0178253
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jean-raphael.marques@polytechnique.fr
  • Received Date: 2023-09-26
  • Accepted Date: 2023-12-05
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet [Marquès et al., Phys. Plasmas 28 , 023103 (2021)]. In a continuation of this numerical work, we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases: without tailoring, by tailoring only the entrance side of the picosecond laser, and by tailoring both sides of the gas jet. Without tailoring, the acceleration is transverse to the laser axis, with a low-energy exponential spectrum, produced by Coulomb explosion. When the front side of the gas jet is tailored, a forward acceleration appears, which is significantly enhanced when both the front and back sides of the plasma are tailored. This forward acceleration produces higher-energy protons, with a peaked spectrum, and is in good agreement with the mechanism of collisionless shock acceleration (CSA). The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam. The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring. Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet. These parameters are in good agreement with those required for CSA.
  • loading
  • [1]
    R. Blandford and D. Eichler, “Particle acceleration at astrophysical shocks: A theory of cosmic ray origin,” Phys. Rep. 154, 1 (1987).10.1016/0370-1573(87)90134-7
    [2]
    F. C. Jones and D. C. Ellison, “The plasma physics of shock acceleration,” Space Sci. Rev. 58, 259 (1991).10.1007/bf01206003
    [3]
    D. Caprioli, P. Blasi, and E. Amato, “Non-linear diffusive acceleration of heavy nuclei in supernova remnant shocks,” Astropart. Phys. 34, 447 (2011).10.1016/j.astropartphys.2010.10.011
    [4]
    K. Koyama, R. Petre, E. V. Gotthelf, U. Hwang, M. Matsuura, M. Ozaki, and S. S. Holt, “Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006,” Nature 378, 255 (1995).10.1038/378255a0
    [5]
    O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, L. Consiglio, M. P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, A. M. Galper, W. Gillard, L. Grishantseva, G. Jerse, A. V. Karelin, S. V. Koldashov, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov, V. Malvezzi, L. Marcelli, A. G. Mayorov, W. Menn, V. V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S. B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y. I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S. A. Voronov, Y. T. Yurkin, J. Wu, G. Zampa, N. Zampa, and V. G. Zverev, “PAMELA measurements of cosmic-ray proton and helium spectra,” Science 332, 69 (2011).10.1126/science.1199172
    [6]
    A. Spitkovsky, “Particle acceleration in relativistic collisionless shocks: Fermi process at last?,” Astrophys. J. 682, L5 (2008).10.1086/590248
    [7]
    A. Spitkovsky, “On the structure of relativistic collisionless shocks in electron-ion plasmas,” Astrophys. J. 673, L39 (2008).10.1086/527374
    [8]
    R. P. Drake, “The design of laboratory experiments to produce collisionless shocks of cosmic relevance,” Phys. Plasmas 7, 4690 (2000).10.1063/1.1314625
    [9]
    C. Courtois, R. A. D. Grundy, A. D. Ash, D. M. Chambers, N. C. Woolsey, R. O. Dendy, and K. G. McClements, “Experiment on collisionless plasma interaction with applications to supernova remnant physics,” Phys. Plasmas 11, 3386 (2004).10.1063/1.1752930
    [10]
    N. C. Woolsey, Y. A. Ali, R. G. Evans, R. A. D. Grundy, S. J. Pestehe, P. G. Carolan, N. J. Conway, R. O. Dendy, P. Helander, K. G. McClements, J. G. Kirk, P. A. Norreys, M. M. Notley, and S. J. Rose, “Collisionless shock and supernova remnant simulations on VULCAN,” Phys. Plasmas 8, 2439 (2001).10.1063/1.1351831
    [11]
    F. Fiuza, G. F. Swadling, A. Grassi, H. G. Rinderknecht, D. P. Higginson, D. D. Ryutov, C. Bruulsema, R. P. Drake, S. Funk, S. Glenzer, G. Gregori, C. K. Li, B. B. Pollock, B. A. Remington, J. S. Ross, W. Rozmus, Y. Sakawa, A. Spitkovsky, S. Wilks, and H.-S. Park, “Electron acceleration in laboratory-produced turbulent collisionless shocks,” Nat. Phys. 16, 916–920 (2020).10.1038/s41567-020-0919-4
    [12]
    L. O. Silva, M. Marti, J. R. Davies, R. A. Fonseca, C. Ren, F. S. Tsung, and W. B. Mori, “Proton shock acceleration in laser–plasma interactions,” Phys. Rev. Lett. 92, 015002 (2004).10.1103/physrevlett.92.015002
    [13]
    F. F. Fiuza, A. Stockem, E. Boella, R. A. Fonseca, L. O. Silva, D. Haberberger, S. Tochitsky, C. Gong, W. B. Mori, and C. Joshi, “Laser-driven shock acceleration of monoenergetic ion beams,” Phys. Rev. Lett. 109, 215001 (2012).10.1103/physrevlett.109.215001
    [14]
    F. F. Fiuza, A. Stockem, E. Boella, R. A. Fonseca, L. O. Silva, D. Haberberger, S. Tochitsky, W. B. Mori, and C. Joshi, “Ion acceleration from laser-driven electrostatic shocks,” Phys. Plasmas 20, 056304 (2013).10.1063/1.4801526
    [15]
    C. A. J. Palmer, N. P. Dover, I. Pogorelsky, M. Babzien, G. I. Dudnikova, M. Ispiriyan, M. N. Polyanskiy, J. Schreiber, P. Shkolnikov, V. Yakimenko, and Z. Najmudin, “Monoenergetic proton beams accelerated by a radiation pressure driven shock,” Phys. Rev. Lett. 106, 014801 (2011).10.1103/physrevlett.106.014801
    [16]
    S. Bulanov, T. Esirkepov, P. Migliozzi, F. Pegoraro, T. Tajima, and F. Terranova, “Neutrino oscillation studies with laser-driven beam dump facilities,” Nucl. Instrum. Methods Phys. Res., Sect. A 540, 25 (2005).10.1016/j.nima.2004.11.013
    [17]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436
    [18]
    M. Temporal, R. Ramis, J. J. Honrubia, and S. Atzeni, “Fast ignition induced by shocks generated by laser-accelerated proton beams,” Plasma Phys. Controlled Fusion 51, 035010 (2009).10.1088/0741-3335/51/3/035010
    [19]
    M. Temporal, J. J. Honrubia, and S. Atzeni, “Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams,” Phys. Plasmas 9, 3098 (2002).10.1063/1.1482375
    [20]
    F. P. Boody, R. Hopfl, H. Hora, and J. C. Kelly, “Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability,” Laser Part. Beams 14, 443 (1996).10.1017/s0263034600010132
    [21]
    M. Borghesi, D. H. Campbell, A. Schiavi, M. G. Haines, O. Willi, A. J. MacKinnon, P. Patel, L. A. Gizzi, M. Galimberti, R. J. Clarke, F. Pegoraro, H. Ruhl, and S. Bulanov, “Electric field detection in laser–plasma interaction experiments via the proton imaging technique,” Phys. Plasmas 9, 2214 (2002).10.1063/1.1459457
    [22]
    C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, P. A. Amendt, S. P. Hatchett, O. L. Landen, A. J. Mackinnon, P. K. Patel, V. A. Smalyuk, T. C. Sangster, and J. P. Knauer, “Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography,” Phys. Rev. Lett. 97, 135003 (2006).10.1103/physrevlett.97.135003
    [23]
    L. Romagnani, S. V. Bulanov, M. Borghesi, P. Audebert, J. C. Gauthier, K. Löwenbrück, A. J. Mackinnon, P. Patel, G. Pretzler, T. Toncian, and O. Willi, “Observation of collisionless shocks in laser–plasma experiments,” Phys. Rev. Lett. 101, 025004 (2008).10.1103/physrevlett.101.025004
    [24]
    S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. Kuznetsov, and F. Pegoraro, “Oncological hadrontherapy with laser ion accelerators,” Phys. Lett. A 299, 240 (2002).10.1016/s0375-9601(02)00521-2
    [25]
    S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep. 28(5), 453 (2002).10.1134/1.1478534
    [26]
    V. Malka, S. Fritzler, E. Lefebvre, E. d’Humières, R. Ferrand, G. Grillon, C. Albaret, S. Meyroneinc, J. P. Chambaret, A. Antonetti, and D. Hulin, “Practicability of protontherapy using compact laser systems,” Med. Phys. 31, 1587 (2004).10.1118/1.1747751
    [27]
    L. Karsch, E. Beyreuther, W. Enghardt, M. Gotz, U. Masood, U. Schramm, K. Zeil, and J. Pawelke, “Towards ion beam therapy based on laser plasma accelerators,” Acta Oncol. 56(11), 1359 (2017).10.1080/0284186x.2017.1355111
    [28]
    I. Spencer, K. Ledingham, R. Singhal, T. McCanny, P. McKenna, E. Clark, K. Krushelnick, M. Zepf, F. Beg, M. Tatarakis, A. Dangor, P. Norreys, R. Clarke, R. Allott, and I. Ross, “Laser generation of proton beams for the production of short-lived positron emitting radioisotopes,” Nucl. Instrum. Methods Phys. Res., Sect. B 183, 449 (2001).10.1016/s0168-583x(01)00771-6
    [29]
    E. Lefebvre, E. D’Humières, S. Fritzler, and V. Malka, “Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions,” J. Appl. Phys. 100, 113308 (2006).10.1063/1.2362908
    [30]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [31]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542 (2001).10.1063/1.1333697
    [32]
    T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92, 175003 (2004).10.1103/physrevlett.92.175003
    [33]
    A. P. L. Robinson, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New J. Phys. 10, 013021 (2008).10.1088/1367-2630/10/1/013021
    [34]
    A. Macchi, S. Veghini, and F. Pegoraro, “Light sail acceleration reexamined,” Phys. Rev. Lett. 103, 085003 (2009).10.1103/physrevlett.103.085003
    [35]
    B. Qiao, S. Kar, M. Geissler, P. Gibbon, M. Zepf, and M. Borghesi, “Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of 1021 W cm−2,” Phys. Rev. Lett. 100, 115002 (2012).10.1103/PhysRevLett.100.115002
    [36]
    L. Yin, B. J. Albright, B. M. Hegelich, K. J. Bowers, K. A. Flippo, T. J. T. Kwan, and J. C. Fernandez, “Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets,” Phys. Plasmas 14, 056706 (2007).10.1063/1.2436857
    [37]
    A. Henig, D. Kiefer, K. Markey, D. C. Gautier, K. A. Flippo, S. Letzring, R. P. Johnson, T. Shimada, L. Yin, B. J. Albright, K. J. Bowers, J. C. Fernandez, S. G. Rykovanov, H.-C. Wu, M. Zepf, D. Jung, V. K. Liechtenstein, J. Schreiber, D. Habs, and B. M. Hegelich, “Enhanced laser-driven ion acceleration in the relativistic transparency regime,” Phys. Rev. Lett. 103, 045002 (2009).10.1103/physrevlett.103.045002
    [38]
    T. Nakamura, S. V. Bulanov, T. Z. Esirkepov, and M. Kando, “High-energy ions from near-critical density plasmas via magnetic vortex acceleration,” Phys. Rev. Lett. 105, 135002 (2010).10.1103/physrevlett.105.135002
    [39]
    J. Park, S. S. Bulanov, J. Bin, Q. Ji, S. Steinke, J. L. Vay, C. G. R. Geddes, C. B. Schroeder, W. P. Leemans, T. Schenkel, and E. Esarey, “Ion acceleration in laser generated megatesla magnetic vortex,” Phys. Plasmas 26, 103108 (2019).10.1063/1.5094045
    [40]
    Z. Najmudin, C. A. J. Palmer, N. P. Dover, I. Pogorelsky, M. Babzien, A. E. Dangor, G. I. Dudnikova, P. S. Foster, J. S. Green, M. Ispiriyan, D. Neely, M. N. Polyanskiy, J. Schreiber, P. Shkolnikov, and V. Yakimenko, “Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target,” Phys. Plasmas 18, 056705 (2011).10.1063/1.3562926
    [41]
    D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams,” Nat. Phys. 8, 95 (2012).10.1038/nphys2130
    [42]
    O. Tresca, N. P. Dover, N. Cook, C. Maharjan, M. N. Polyanskiy, Z. Najmudin, P. Shkolnikov, and I. Pogorelsky, “Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target,” Phys. Rev. Lett. 115, 094802 (2015).10.1103/physrevlett.115.094802
    [43]
    Y. Chen, M. Helle, A. Ting, D. Gordon, N. Dover, O. Ettlinger, Z. Najmudin, M. Polyanskiy, I. Pogorelsky, and M. Babzien, “Laser acceleration of protons with an optically shaped, near-critical hydrogen gas target,” AIP Conf. Proc 1812, 090002 (2017).10.1063/1.4975898
    [44]
    S. N. Chen, M. Vranic, T. Gangolf, E. Boella, P. Antici, M. Bailly-Grandvaux, P. Loiseau, H. Pépin, G. Revet, J. J. Santos, A. M. Schroer, M. Starodubtsev, O. Willi, L. O. Silva, E. d’Humières, and J. Fuchs, “Collimated protons accelerated from an overdense gas jet irradiated by a 1 μm wavelength high-intensity short-pulse laser,” Sci. Rep. 7, 13505 (2017).10.1038/s41598-017-12910-6
    [45]
    P. Puyuelo-Valdes, J. L. Henares, F. Hannachi, T. Ceccotti, J. Domange, M. Ehret, E. d’Humieres, L. Lancia, J.-R. Marquès, X. Ribeyre, J. J. Santos, V. Tikhonchuk, and M. Tarisien, “Proton acceleration by collisionless shocks using a supersonic H2 gas-jet target and high-power infrared laser pulses,” Phys. Plasmas 26, 123109 (2019).10.1063/1.5116337
    [46]
    A. Pak, S. Kerr, N. Lemos, A. Link, P. Patel, F. Albert, L. Divol, B. B. Pollock, D. Haberberger, D. Froula, M. Gauthier, S. H. Glenzer, A. Longman, L. Manzoor, R. Fedosejevs, S. Tochitsky, C. Joshi, and F. Fiuza, “Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 μm lasers,” Phys. Rev. Accel. Beams 21, 103401 (2018).10.1103/physrevaccelbeams.21.103401
    [47]
    S. Tochitsky, A. Pak, F. Fiuza, D. Haberberger, N. Lemos, A. Link, D. H. Froula, and C. Joshi, “Laser-driven collisionless shock acceleration of ions from near-critical plasmas,” Phys. Plasmas 27, 083102 (2020).10.1063/1.5144446
    [48]
    J.-R. Marquès, P. Loiseau, J. Bonvalet, M. Tarisien, E. d’Humières, J. Domange, F. Hannachi, L. Lancia, O. Larroche, P. Nicolaï, P. Puyuelo-Valdes, L. Romagnani, J. Santos, and V. Tikhonchuk, “Over-critical sharp-gradient plasma slab produced by the collision of laser-induced blast-waves in a gas jet: Application to high-energy proton acceleration,” Phys. Plasmas 28, 023103 (2021).10.1063/5.0031313
    [49]
    J. Bonvalet, P. Loiseau, J.-R. Marquès, E. Atukpor, E. d’Humières, J. Domange, P. Forestier-Colleoni, F. Hannachi, L. Lancia, D. Raffestin, M. Tarisien, V. Tikhonchuk, and P. Nicolaï, “Laser-driven collisionless shock acceleration of protons from gas jets tailored by one or two nanosecond beams,” Phys. Plasmas 28, 113102 (2021).10.1063/5.0062503
    [50]
    J. L. Henares, P. Puyuelo-Valdes, F. Hannachi, T. Ceccotti, M. Ehret, F. Gobet, L. Lancia, J.-R. Marquès, J. J. Santos, M. Versteegen, and M. Tarisien, “Development of gas jet targets for laser–plasma experiments at near-critical density,” Rev. Sci. Instrum. 90, 063302 (2019).10.1063/1.5093613
    [51]
    S. S. Bulanov, V. Y. Bychenkov, V. Chvykov, G. Kalinchenko, D. W. Litzenberg, T. Matsuoka, A. G. R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, and A. Maksimchuk, “Generation of GeV protons from 1 PW laser interaction with near critical density targets,” Phys. Plasmas 17, 043105 (2010).10.1063/1.3372840
    [52]
    J.-X. Liu, Y. Zhao, X.-P. Wang, J.-Z. Quan, T.-P. Yu, G.-B. Zhang, X.-H. Yang, Y.-Y. Ma, F.-Q. Shao, and J. Zhao, “High-flux positrons generation via two counter-propagating laser pulses irradiating near-critical-density plasmas,” Phys. Plasmas 25, 103106 (2018).10.1063/1.5043627
    [53]
    X. L. Zhu, T. P. Yu, Z. M. Sheng, Y. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).10.1038/ncomms13686
    [54]
    O. N. Rosmej, N. E. Andreev, S. Zaehter, N. Zahn, P. Christ, B. Borm, T. Radon, A. Sokolov, L. P. Pugachev, D. Khaghani, F. Horst, N. G. Borisenko, G. Sklizkov, and V. G. Pimenov, “Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays,” New J. Phys. 21, 043044 (2019).10.1088/1367-2630/ab1047
    [55]
    G. S. Sarkisov, V. Y. Bychenkov, V. N. Novikov, V. T. Tikhonchuk, A. Maksimchuk, S.-Y. Chen, R. Wagner, G. Mourou, and D. Umstadter, “Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a he jet,” Phys. Rev. E 59, 7042 (1999).10.1103/physreve.59.7042
    [56]
    K. Krushelnick, E. L. Clark, Z. Najmudin, M. Salvati, M. I. K. Santala, M. Tatarakis, A. E. Dangor, V. Malka, D. Neely, R. Allott, and C. Danson, “Multi-MeV ion production from high-intensity laser interactions with underdense plasmas,” Phys. Rev. Lett. 83, 737 (1999).10.1103/physrevlett.83.737
    [57]
    M. S. Wei, S. P. D. Mangles, Z. Najmudin, B. Walton, A. Gopal, M. Tatarakis, A. E. Dangor, E. L. Clark, R. G. Evans, S. Fritzler, R. J. Clarke, C. Hernandez-Gomez, D. Neely, W. Mori, M. Tzoufras, and K. Krushelnick, “Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction,” Phys. Rev. Lett. 93, 155003 (2004).10.1103/physrevlett.93.155003
    [58]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [59]
    F. Tsung, S. Y. Tochitsky, D. J. Haberberger, W. B. Mori, and C. Joshi, “CO2 Laser acceleration of forward directed MeV proton beams in a gas target at critical plasma density,” J. Plasma Phys. 78, 373 (2012).10.1017/s0022377812000189
    [60]
    L. Ceurvorst, N. Ratan, M. C. Levy, M. F. Kasim, J. Sadler, R. H. H. Scott, R. M. G. M. Trines, T. W. Huang, M. Skramic, M. Vranic, L. O. Silva, and P. A. Norreys, “Mitigating the hosing instability in relativistic laser–plasma interactions,” New J. Phys. 18, 053023 (2016).10.1088/1367-2630/18/5/053023
    [61]
    R. Z. Sagdeev, “Cooperative phenomena and shock waves in collisionless plasmas,” Rev. Plasma Phys. 4, 23 (1966).
    [62]
    E. Lefebvre, S. Bernard, C. Esnault, P. Gauthier, A. Grisollet, P. Hoch, L. Jacquet, G. Kluth, S. Laffite, S. Liberatore, I. Marmajou, P.-E. Masson-Laborde, O. Morice, and J.-L. Willien, “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2019).10.1088/1741-4326/aacc9c
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (48) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return