Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Gao Jianpeng, Sheng Liang, Wang Xinyi, Zhang Yanhong, Li Liang, Duan Baojun, Zhang Mei, Li Yang, Hei Dongwei. Five-view three-dimensional reconstruction for ultrafast dynamic imaging of pulsed radiation sources[J]. Matter and Radiation at Extremes, 2024, 9(2): 027801. doi: 10.1063/5.0177342
Citation: Gao Jianpeng, Sheng Liang, Wang Xinyi, Zhang Yanhong, Li Liang, Duan Baojun, Zhang Mei, Li Yang, Hei Dongwei. Five-view three-dimensional reconstruction for ultrafast dynamic imaging of pulsed radiation sources[J]. Matter and Radiation at Extremes, 2024, 9(2): 027801. doi: 10.1063/5.0177342

Five-view three-dimensional reconstruction for ultrafast dynamic imaging of pulsed radiation sources

doi: 10.1063/5.0177342
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: lliang@tsinghua.edu.cn and heidw@163.com
  • Received Date: 2023-09-21
  • Accepted Date: 2023-11-30
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights into the generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of the pulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography 3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are often available for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete data may introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction method using cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. We augment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have been carried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns between adjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstruction results and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.
  • loading
  • [1]
    A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey, T. Doppner, L. Divol, M. Hohenberger, S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D. S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong, J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J. M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, C. Trosseille, P. L. Volegov, C. R. Weber, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, and G. B. Zimmerman, “Burning plasma achieved in inertial fusion,” Nature 601(7894), 542–548 (2022).10.1038/s41586-021-04281-w
    [2]
    A. L. Kritcher, D. T. Casey, C. A. Thomas, A. B. Zylstra, M. Hohenberger, K. Baker, S. Le Pape, B. Bachmann, S. Bhandarkar, J. Biener, T. Braun, D. Clark, L. Divol, T. Doppner, D. Hinkel, C. Kong, D. Mariscal, M. Millot, J. Milovich, A. Nikroo, A. Pak, N. Rice, H. Robey, M. Stadermann, J. Sevier, D. Strozzi, C. Weber, C. Wild, B. Woodworth, J. Edwards, D. A. Callahan, and O. A. Hurricane, “Symmetric fielding of the largest diamond capsule implosions on the NIF,” Phys. Plasmas 27(5), 052710 (2020).10.1063/5.0004221
    [3]
    S. A. Slutz, M. R. Gomez, S. B. Hansen, E. C. Harding, B. T. Hutsel, P. F. Knapp, D. C. Lamppa, T. J. Awe, D. J. Ampleford, D. E. Bliss, G. A. Chandler, M. E. Cuneo, M. Geissel, M. E. Glinsky, A. J. Harvey-Thompson, M. H. Hess, C. A. Jennings, B. Jones, G. R. Laity, M. R. Martin, K. J. Peterson, J. L. Porter, P. K. Rambo, G. A. Rochau, C. L. Ruiz, M. E. Savage, J. Schwarz, P. F. Schmit, G. Shipley, D. B. Sinars, I. C. Smith, R. A. Vesey, and M. R. Weis, “Enhancing performance of magnetized liner inertial fusion at the Z facility,” Phys. Plasmas 25(11), 112706 (2018).10.1063/1.5054317
    [4]
    C. Liang, L. Zhou, F. Sun, J. Zeng, M. Li, Z. Wang, Z. Li, and X. Peng, “A repetitive 800 kA linear transformer drivers stage for Z-pinch driven fusion-fission hybrid reactor,” Laser Part. Beams 33(3), 535–540 (2015).10.1017/s0263034615000579
    [5]
    S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108(2), 025003 (2012).10.1103/physrevlett.108.025003
    [6]
    W. Xinyi, S. Liang, Z. Mei, L. Yang, Z. Yanhong, G. Jianpeng, Z. Jizhen, L. Yongtang, C. Ziwei, J. Yuan, and Z. Qingmin, “Two-axis XUV/SR imaging system with temporal-spatial resolution for wire array Z-pinch on Qin-1,” J. Instrum. 17(06), P06011 (2022).10.1088/1748-0221/17/06/p06011
    [7]
    P. L. Volegov, C. R. Danly, F. E. Merrill, R. Simpson, and C. H. Wilde, “On three-dimensional reconstruction of a neutron/x-ray source from very few two-dimensional projections,” J. Appl. Phys. 118(20), 205903 (2015).10.1063/1.4936319
    [8]
    D. J. Schlossberg, R. M. Bionta, D. T. Casey, M. J. Eckart, D. N. Fittinghoff, V. Geppert-Kleinrath, G. P. Grim, K. D. Hahn, E. P. Hartouni, J. Jeet, S. M. Kerr, A. J. Mackinnon, A. S. Moore, and P. L. Volegov, “Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas,” Rev. Sci. Instrum. 92(5), 053526 (2021).10.1063/5.0043853
    [9]
    [10]
    M. Nakai, S. Shinohara, M. Katayama, Y. W. Chen, S. Kobayashi, N. Miyanaga, K. A. Tanaka, K. Nishihara, M. Yamanaka, T. Yamanaka, and S. Nakai, “Development of x-ray emission computed tomography for ICF research,” Rev. Sci. Instrum. 61(10), 2783–2785 (1990).10.1063/1.1141830
    [11]
    Y.-W. Chen, T. Kohatsu, S. Nozaki, and R. Kodama, “Heuristic reconstruction of three-dimensional laser-imploded targets from x-ray pinhole images,” Rev. Sci. Instrum. 74(3), 2236–2239 (2003).10.1063/1.1537861
    [12]
    L. Li, Z. Chen, R. Xu, and Y. Huang, “A new inversion method of plasma density distribution of plasmasphere in the geomagnetic equatorial plane from IMAGE data,” Adv. Space Res. 48(12), 2036–2042 (2011).10.1016/j.asr.2011.08.027
    [13]
    L. M. Pecora, “3D tomographic reconstruction from 2D data using spherical harmonics,” IEEE Trans. Nucl. Sci. 34(2), 642–650 (1987).10.1109/tns.1987.4334688
    [14]
    J. Gao, L. Sheng, B. Duan, X. Wang, D. Hei, and H. Chen, “Three-dimensional iterative reconstruction of pulsed radiation sources using spherical harmonic decomposition,” Rev. Sci. Instrum. 93(11), 113551 (2022).10.1063/5.0105279
    [15]
    [16]
    K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process. 26(9), 4509–4522 (2017).10.1109/tip.2017.2713099
    [17]
    M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proceedings of the 36th International Conference on Machine Learning (JMLR, 2019), Vol. 97, pp. 6105–6114.
    [18]
    [19]
    D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” Int. J. Comput. Vision 128(7), 1867–1888 (2020).10.1007/s11263-020-01303-4
    [20]
    N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).10.1002/jemt.20294
    [21]
    S. Boyd, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends® Mach. Learn. 3(1), 1–122 (2010).10.1561/2200000016
    [22]
    J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. Comput. 35(151), 773–782 (1980).10.1090/s0025-5718-1980-0572855-7
    [23]
    D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Programm. 45(1–3), 503–528 (1989).10.1007/bf01589116
    [24]
    S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comput. Imaging 3(1), 84–98 (2017).10.1109/tci.2016.2629286
    [25]
    O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Springer-Verlag, 2015), Vol. 9351, pp. 234–241.
    [26]
    Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).10.1109/tip.2003.819861
    [27]
    Z. Jiang, J. Wu, Z. Chen, W. Wang, Z. Wang, Y. Lu, H. Shi, X. Li, and A. Qiu, “Improvement of Faraday rotation and its application in preconditioned single-wire Z-pinch plasma,” IEEE Trans. Plasma Sci. 51(4), 944–952 (2023).10.1109/tps.2022.3233030
    [28]
    Z. Jiang, J. Wu, Z. Chen, W. Wang, Z. Wang, Y. Lu, Y. Zhao, H. Shi, and X. Li, “Experimental study of the mechanism of prepulse current on Z-pinch plasma using Faraday rotation diagnosis,” Phys. Rev. E 107(5), 055201 (2023).10.1103/physreve.107.055201
    [29]
    J. Wu, Y. H. Lu, F. J. Sun, X. W. Li, X. F. Jiang, Z. G. Wang, D. Y. Zhang, A. C. Qiu, and S. Lebedev, “Preconditioned wire array Z-pinches driven by a double pulse current generator,” Plasma Phys. Controlled Fusion 60(7), 075014 (2018).10.1088/1361-6587/aac4fe
    [30]
    [31]
    P. Volegov, C. R. Danly, D. N. Fittinghoff, G. P. Grim, N. Guler, N. Izumi, T. Ma, F. E. Merrill, A. L. Warrick, C. H. Wilde, and D. C. Wilson, “Neutron source reconstruction from pinhole imaging at National Ignition Facility,” Rev. Sci. Instrum. 85(2), 023508 (2014).10.1063/1.4865456
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (29) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return