Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Zhang Zhiyu, Zhao Yang, Han Xiaoying, Li Liling, Qing Bo, Hou Lifei, Li Yulong, Zhang YuXue, Zhang Huan, Liu Xiangming, Deng Bo, Xiong Gang, Lv Min, Zhu Tuo, Huang Chengwu, Song Tianming, Zhao Yan, Li Yingjie, Zhang Lu, Xie Xufei, Zhang Jiyan, Yang Jiamin. Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum[J]. Matter and Radiation at Extremes, 2024, 9(3): 037601. doi: 10.1063/5.0177038
Citation: Zhang Zhiyu, Zhao Yang, Han Xiaoying, Li Liling, Qing Bo, Hou Lifei, Li Yulong, Zhang YuXue, Zhang Huan, Liu Xiangming, Deng Bo, Xiong Gang, Lv Min, Zhu Tuo, Huang Chengwu, Song Tianming, Zhao Yan, Li Yingjie, Zhang Lu, Xie Xufei, Zhang Jiyan, Yang Jiamin. Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum[J]. Matter and Radiation at Extremes, 2024, 9(3): 037601. doi: 10.1063/5.0177038

Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum

doi: 10.1063/5.0177038
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yjm70018@sina.cn
  • Received Date: 2023-09-19
  • Accepted Date: 2024-02-01
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • A self-consistent and precise method to determine the time-dependent radiative albedo, i.e., the ratio of the reemission flux to the incident flux, for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed. A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV. The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample. The results agree well owing to the symmetrical radiation in the secondary cavity. A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux, and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis, and also to agree well with the result of a simulation using the HYADES opacity.
  • loading
  • [1]
    J. D. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
    [2]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [3]
    S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion (Clarendon Press, Oxford, 2004).
    [4]
    H. Abu-Shawareb et al., The Indirect Drive ICF Collaboration, “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett 132, 065102 (2024).10.1103/physrevlett.132.065102
    [5]
    T. Ma, P. K. Patel, N. Izumi, P. T. Springer, M. H. Key, L. J. Atherton, L. R. Benedetti, D. K. Bradley, D. A. Callahan, P. M. Celliers, C. J. Cerjan, D. S. Clark, E. L. Dewald, S. N. Dixit, T. Döppner, D. H. Edgell, R. Epstein, S. Glenn, G. Grim, S. W. Haan, B. A. Hammel, D. Hicks, W. W. Hsing, O. S. Jones, S. F. Khan, J. D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, S. Le Pape, B. J. MacGowan, A. J. Mackinnon, A. G. MacPhee, N. B. Meezan, J. D. Moody, A. Pak, T. Parham, H.-S. Park, J. E. Ralph, S. P. Regan, B. A. Remington, H. F. Robey, J. S. Ross, B. K. Spears, V. Smalyuk, L. J. Suter, R. Tommasini, R. P. Town, S. V. Weber, J. D. Lindl, M. J. Edwards, S. H. Glenzer, and E. I. Moses, “Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions,” Phys. Rev. Lett. 111, 085004 (2013).10.1103/physrevlett.111.085004
    [6]
    M. J. Edwards, P. K. Patel, J. D. Lindl, L. J. Atherton, S. H. Glenzer, S. W. Haan, J. D. Kilkenny, O. L. Landen, E. I. Moses, A. Nikroo, R. Petrasso, T. C. Sangster, P. T. Springer, S. Batha, R. Benedetti, L. Bernstein, R. Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, J. A. Caggiano, D. A. Callahan, P. M. Celliers, C. J. Cerjan, K. C. Chen, D. S. Clark, G. W. Collins, E. L. Dewald, L. Divol, S. Dixit, T. Doeppner, D. H. Edgell, J. E. Fair, M. Farrell, R. J. Fortner, J. Frenje, M. G. Gatu Johnson, E. Giraldez, V. Y. Glebov, G. Grim, B. A. Hammel, A. V. Hamza, D. R. Harding, S. P. Hatchett, N. Hein, H. W. Herrmann, D. Hicks, D. E. Hinkel, M. Hoppe, W. W. Hsing, N. Izumi, B. Jacoby, O. S. Jones, D. Kalantar, R. Kauffman, J. L. Kline, J. P. Knauer, J. A. Koch, B. J. Kozioziemski, G. Kyrala, K. N. LaFortune, S. L. Pape, R. J. Leeper, R. Lerche, T. Ma, B. J. MacGowan, A. J. MacKinnon, A. Macphee, E. R. Mapoles, M. M. Marinak, M. Mauldin, P. W. McKenty, M. Meezan, P. A. Michel, J. Milovich, J. D. Moody, M. Moran, D. H. Munro, C. L. Olson, K. Opachich, A. E. Pak, T. Parham, H.-S. Park, J. E. Ralph, S. P. Regan, B. Remington, H. Rinderknecht, H. F. Robey, M. Rosen, S. Ross, J. D. Salmonson, J. Sater, D. H. Schneider, F. H. Séguin, S. M. Sepke, D. A. Shaughnessy, V. A. Smalyuk, B. K. Spears, C. Stoeckl, W. Stoeffl, L. Suter, C. A. Thomas, R. Tommasini, R. P. Town, S. V. Weber, P. J. Wegner, K. Widman, M. Wilke, D. C. Wilson, C. B. Yeamans, and A. Zylstra, “Progress towards ignition on the National Ignition Facility,” Phys. Plasmas 20, 070501 (2013).10.1063/1.4816115
    [7]
    D. S. Clark, D. E. Hinkel, D. C. Eder, O. S. Jones, S. W. Haan, B. A. Hammel, M. M. Marinak, J. L. Milovich, H. F. Robey, L. J. Suter, and R. P. J. Town, “Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility,” Phys. Plasmas 20, 056318 (2013).10.1063/1.4802194
    [8]
    J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, “Review of the National Ignition Campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400
    [9]
    R. P. J. Town, D. K. Bradley, A. Kritcher, O. S. Jones, J. R. Rygg, R. Tommasini, M. Barrios, L. R. Benedetti, L. F. Berzak Hopkins, P. M. Celliers, T. Döppner, E. L. Dewald, D. C. Eder, J. E. Field, S. M. Glenn, N. Izumi, S. W. Haan, S. F. Khan, J. L. Kline, G. A. Kyrala, T. Ma, J. L. Milovich, J. D. Moody, S. R. Nagel, A. Pak, J. L. Peterson, H. F. Robey, J. S. Ross, R. H. H. Scott, B. K. Spears, M. J. Edwards, J. D. Kilkenny, and O. L. Landen, “Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility,” Phys. Plasmas 21, 056313 (2014).10.1063/1.4876609
    [10]
    T. R. Dittrich, O. A. Hurricane, D. A. Callahan, E. L. Dewald, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, J. L. Milovich, J. C. Moreno, P. K. Patel, H.-S. Park, B. A. Remington, J. D. Salmonson, and J. L. Kline, “Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility,” Phys. Rev. Lett. 112, 055002 (2014).10.1103/physrevlett.112.055002
    [11]
    H.-S. Park, O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, P. K. Patel, B. A. Remington, H. F. Robey, J. D. Salmonson, and J. L. Kline, “High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility,” Phys. Rev. Lett. 112, 055001 (2014).10.1103/physrevlett.112.055001
    [12]
    J. Gu, Z. Dai, S. Zou, W. Ye, W. Zheng, P. Gu, and S. Zhu, “Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions,” Matter Radiat. Extremes 2, 9 (2017).10.1016/j.mre.2016.09.002
    [13]
    K. L. Baker, C. A. Thomas, D. T. Casey, S. Khan, B. K. Spears, R. Nora, T. Woods, J. L. Milovich, R. L. Berger, D. Strozzi, D. Clark, M. Hohenberger, O. A. Hurricane, D. A. Callahan, O. L. Landen, B. Bachmann, R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, C. Goyon, G. Grim, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, M. Millot, S. R. Nagel, A. Pak, P. K. Patel, D. Turnbull, P. L. Volegov, and C. Yeamans, “High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility,” Phys. Rev. Lett. 121, 135001 (2018).10.1103/physrevlett.121.135001
    [14]
    D. T. Casey, C. A. Thomas, K. L. Baker, B. K. Spears, M. Hohenberger, S. F. Khan, R. C. Nora, C. R. Weber, D. T. Woods, O. A. Hurricane, D. A. Callahan, R. L. Berger, J. L. Milovich, P. K. Patel, T. Ma, A. Pak, L. R. Benedetti, M. Millot, C. Jarrott, O. L. Landen, R. M. Bionta, B. J. MacGowan, D. J. Strozzi, M. Stadermann, J. Biener, A. Nikroo, C. S. Goyon, N. Izumi, S. R. Nagel, B. Bachmann, P. L. Volegov, D. N. Fittinghoff, G. P. Grim, C. B. Yeamans, M. Gatu Johnson, J. A. Frenje, N. Rice, C. Kong, J. Crippen, J. Jaquez, K. Kangas, and C. Wild, “The high velocity, high adiabat, bigfoot campaign and tests of indirect-drive implosion scaling,” Phys. Plasmas 25, 056308 (2018).10.1063/1.5019741
    [15]
    A. L. Kritcher, A. B. Zylstra, D. A. Callahan, O. A. Hurricane, C. Weber, J. Ralph, D. T. Casey, A. Pak, K. Baker, B. Bachmann, S. Bhandarkar, J. Biener, R. Bionta, T. Braun, M. Bruhn, C. Choate, D. Clark, J. M. Di Nicola, L. Divol, T. Doeppner, V. Geppert-Kleinrath, S. Haan, J. Heebner, V. Hernandez, D. Hinkel, M. Hohenberger, H. Huang, C. Kong, S. Le Pape, D. Mariscal, E. Marley, L. Masse, K. D. Meaney, M. Millot, A. Moore, K. Newman, A. Nikroo, P. Patel, L. Pelz, N. Rice, H. Robey, J. S. Ross, M. Rubery, J. Salmonson, D. Schlossberg, S. Sepke, K. Sequoia, M. Stadermann, D. Strozzi, R. Tommasini, P. Volegov, C. Wild, S. Yang, C. Young, M. J. Edwards, O. Landen, R. Town, and M. Herrmann, “Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E,” Phys. Plasmas 28, 072706 (2021).10.1063/5.0047841
    [16]
    O. S. Jones, S. H. Glenzer, L. J. Suter, R. E. Turner, K. M. Campbell, E. L. Dewald, B. A. Hammel, J. H. Hammer, R. L. Kauffman, O. L. Landen, M. D. Rosen, R. J. Wallace, and F. A. Weber, “Measurement of the absolute hohlraum-wall albedo under ignition foot drive conditions,” Phys. Rev. Lett. 93, 065002 (2004).10.1103/physrevlett.93.065002
    [17]
    H. Nishimura, H. Takabe, K. Kondo, T. Endo, H. Shiraga, K. Sugimoto, T. Nishikawa, Y. Kato, and S. Nakai, “X-ray emission and transport in gold plasmas generated by 351-nm laser irradiation,” Phys. Rev. A 43, 3073 (1991).10.1103/physreva.43.3073
    [18]
    I. B. Földes, K. Eidmann, T. Löwer, J. Massen, R. Sigel, G. D. Tsakiris, S. Witkowski, H. Nishimura, T. Endo, H. Shiraga, M. Takagi, Y. Kato, and S. Nakai, “X-ray reemission from CH foils heated by laser-generated intense thermal radiation,” Phys. Rev. E 50, R690 (1994).10.1103/physreve.50.r690
    [19]
    K. Eidmann, I. B. Földes, T. Löwer, J. Massen, R. Sigel, G. D. Tsakiris, S. Witkowski, H. Nishimura, Y. Kato, T. Endo, H. Shiraga, M. Takagi, and S. Nakai, “Radiative heating of low-Z solid foils by laser-generated x rays,” Phys. Rev. E 52, 6703 (1995).10.1103/physreve.52.6703
    [20]
    R. Sigel, G. Tsakiris, F. Lavarenne, J. Massen, R. Fedosejevs, K. Eidmann, J. Meyer-ter Vehn, M. Murakami, S. Witkowski, H. Nishimura et al., “Experimental investigation of radiation heat waves driven by laser-induced Planck radiation,” Phys. Rev. A 45, 3987 (1992).10.1103/physreva.45.3987
    [21]
    Z. Wanguo, Z. Xiaomin, W. Xiaofeng, J. Feng, S. Zhan, Z. Kuixin, Y. Xiaodong, J. Xiaodong, S. Jingqin, Z. Hai, L. Mingzhong, W. Jianjun, H. Dongxia, H. Shaobo, X. Yong, P. Zhitao, F. Bin, G. Liangfu, L. Xiaoqun, Z. Qihua, Y. Haiwu, Y. Yong, F. Dianyuan, and Z. Weiyan, “Status of the SG-III solid-state laser facility,” J. Phys.: Conf. Ser. 112, 032009 (2008).10.1088/1742-6596/112/3/032009
    [22]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-III laser facility,” Matter Radiat. Extremes 2, 243 (2017).10.1016/j.mre.2017.07.004
    [23]
    X. Xie, H. Du, J. Chen, S. Liu, Z. Li, D. Yang, Y. Huang, K. Ren, L. Hou, S. Li, L. Guo, X. Jiang, W. Huo, Y. Chen, G. Ren, K. Lan, F. Wang, S. Jiang, and Y. Ding, “Application of the space-resolving flux detector for radiation measurements from an octahedral-aperture spherical hohlraum,” Rev. Sci. Instrum. 89, 063502 (2018).10.1063/1.5028124
    [24]
    F. Wang, X. Peng, S. Liu, T. Xu, L. Mei, X. Jiang, and Y. Ding, “A line-imaging velocity interferometer technique for shock diagnostics without x-ray preheat limitation,” Rev. Sci. Instrum. 82, 103108 (2011).10.1063/1.3653800
    [25]
    L. Jing, S. Jiang, D. Yang, H. Li, L. Zhang, Z. Lin, L. Li, L. Kuang, Y. Huang, and Y. Ding, “Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion,” Phys. Plasmas 22, 022709 (2015).10.1063/1.4908276
    [26]
    Z. Li, X. Jiang, S. Liu, T. Huang, J. Zheng, J. Yang, S. Li, L. Guo, X. Zhao, H. Du, T. Song, R. Yi, Y. Liu, S. Jiang, and Y. Ding, “A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV,” Rev. Sci. Instrum. 81, 073504 (2010).10.1063/1.3460269
    [27]
    S. Tianming, Y. Jiamin, and Y. Rongqing, “Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array,” Rev. Sci. Instrum. 83, 113102 (2012).10.1063/1.4766960
    [28]
    L. Guo, X. Li, X. Xie, B. Deng, X. Jiang, S. Li, Z. Li, K. Deng, Q. Wang, Z. Cao, P. Song, H. Du, Y. Yang, X. Che, L. Hou, W. Zha, T. Xu, S. Liu, C. Zheng, W. Zheng, Y. Ding, D. Yang, F. Wang, J. Yang, S. Jiang, and B. Zhang, “Experimental and simulation studies on gold bubble movement in gas-filled hohlraums,” Nucl. Fusion 59, 016002 (2019).10.1088/1741-4326/aae8bc
    [29]
    L. Guo, S. Li, J. Zheng, Z. Li, D. Yang, H. Du, L. Hou, Y. Cui, J. Yang, S. Liu et al., “A compact flat-response x-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV,” Meas. Sci. and Technol. 23, 065902 (2012).10.1088/0957-0233/23/6/065902
    [30]
    R. E. Olson, D. K. Bradley, G. A. Rochau, G. W. Collins, R. J. Leeper, and L. J. Suter, “Time-resolved characterization of Hohlraum radiation temperature via interferometer measurement of quartz shock velocity,” Rev. Sci. Instrum. 77, 10E531 (2006).10.1063/1.2336458
    [31]
    R. Ramis, R. Schmalz, and J. Meyer-Ter-Vehn, “MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics,” Comput. Phys. Comm. 49, 475 (1988).10.1016/0010-4655(88)90008-2
    [32]
    W. Liu, X. Duan, S. Jiang, Z. Wang, L. Sun, H. Liu, W. Yang, H. Zhang, Q. Ye, P. Wang, Y. Li, L. Yi, and S. Dong, “Laser-driven shock compression of gold foam in the terapascal pressure range,” Phys. Plasmas 25, 062707 (2018).10.1063/1.5026623
    [33]
    C. Zhang, H. Liu, X. Duan, Y. Liu, H. Zhang, L. Sun, Q. Ye, W. Yang, F. Wang, J. Yang, S. Jiang, Z. Wang, and Y. Ding, “Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers,” Phys. Plasmas 26, 012708 (2019).10.1063/1.5054990
    [34]
    X. Duan, C. Zhang, Z. Guan, L. Sun, X. Peng, H. Liu, W. Yang, Y. Li, H. Zhang, Q. Ye, J. Yang, S. Jiang, and Z. Wang, “Transparency measurement of lithium fluoride under laser-driven accelerating shock loading,” J. Appl. Phys. 128, 015902 (2020).10.1063/5.0003869
    [35]
    P. Wang, C. Zhang, S. Jiang, X. Duan, H. Zhang, L. Li, W. Yang, Y. Liu, Y. Li, L. Sun, H. Liu, and Z. Wang, “Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF,” Matter Radiat. Extremes 6, 035902 (2021).10.1063/5.0039062
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (45) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return