Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Chen Kaiguo, Chen Bo, Cui Yinan, Yu Yuying, Yu Jidong, Geng Huayun, Kang Dongdong, Wu Jianhua, Shen Yao, Dai Jiayu. On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass[J]. Matter and Radiation at Extremes, 2024, 9(2): 027802. doi: 10.1063/5.0176138
Citation: Chen Kaiguo, Chen Bo, Cui Yinan, Yu Yuying, Yu Jidong, Geng Huayun, Kang Dongdong, Wu Jianhua, Shen Yao, Dai Jiayu. On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass[J]. Matter and Radiation at Extremes, 2024, 9(2): 027802. doi: 10.1063/5.0176138

On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass

doi: 10.1063/5.0176138
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: chenkaiguo@nudt.edu.cn; yaoshen@sjtu.edu.cn; and jydai@nudt.edu.cn
  • Received Date: 2023-09-11
  • Accepted Date: 2024-01-10
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extreme conditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50 is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physical properties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change are successfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relatively insensitive to the strain rate γ̇ when γ̇ ranges from 7.5 × 108 to 2 × 109/s, which are values reachable in QIC experiments, with a magnitude of the order of 10−2 kB/atom per GPa. However, when γ̇ is extremely high (>2×109/s), a notable increase in entropy production rate with γ̇ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated that entropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase in configurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamental relation between microstructure evolution and plastic dissipation.
  • loading
  • [1]
    H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin, W. Yang, and H. Zheng, “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1(1), 59–75 (2016).10.1016/j.mre.2016.01.005
    [2]
    R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).10.1038/nphys3736
    [3]
    S. Nakai and H. Takabe, “Principles of inertial confinement fusion–physics of implosion and the concept of inertial fusion energy,” Rep. Prog. Phys. 59(9), 1071 (1996).10.1088/0034-4885/59/9/002
    [4]
    V. N. Goncharov, O. V. Gotchev, E. Vianello, T. R. Boehly, J. P. Knauer, P. W. McKenty, P. B. Radha, S. P. Regan, T. C. Sangster, S. Skupsky, V. A. Smalyuk, R. Betti, R. L. McCrory, D. D. Meyerhofer, and C. Cherfils-Clérouin, “Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,” Phys. Plasmas 13(1), 012702 (2006).10.1063/1.2162803
    [5]
    R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).10.1063/1.4934714
    [6]
    D. Kang, Y. Hou, Q. Zeng, and J. Dai, “Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region,” Matter Radiat. Extremes 5(5), 055401 (2020).10.1063/5.0008231
    [7]
    J. Lütgert, M. Bethkenhagen, B. Bachmann, L. Divol, D. O. Gericke, S. H. Glenzer, G. N. Hall, N. Izumi, S. F. Khan, O. L. Landen, S. A. MacLaren, L. Masse, R. Redmer, M. Schörner, M. O. Schölmerich, S. Schumacher, N. R. Shaffer, C. E. Starrett, P. A. Sterne, C. Trosseille, T. Döppner, and D. Kraus, “Platform for probing radiation transport properties of hydrogen at conditions found in the deep interiors of red dwarfs,” Phys. Plasmas 29(8), 083301 (2022).10.1063/5.0094579
    [8]
    B. Remington, “Exploring the universe through Discovery Science on the NIF,” in 2021 IEEE International Conference on Plasma Science (ICOPS), Lake Tahoe, NV, 12-16 September 2021 (IEEE, 2021).
    [9]
    [10]
    A. Krygier, P. D. Powell, J. M. McNaney, C. M. Huntington, S. T. Prisbrey, B. A. Remington, R. E. Rudd, D. C. Swift, C. E. Wehrenberg, A. Arsenlis, H. S. Park, P. Graham, E. Gumbrell, M. P. Hill, A. J. Comley, and S. D. Rothman, “Extreme hardening of Pb at high pressure and strain rate,” Phys. Rev. Lett. 123(20), 205701 (2019).10.1103/physrevlett.123.205701
    [11]
    N. Jourdain, U. Chaulagain, M. Havlík, D. Kramer, D. Kumar, I. Majerová, V. T. Tikhonchuk, G. Korn, and S. Weber, “The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-beamlines,” Matter Radiat. Extremes 6(1), 015401 (2020).10.1063/5.0022120
    [12]
    D. Riley, Shock and Ramp Compression, Warm Dense Matter (IOP Publishing, 2021).
    [13]
    S. C. Grant, T. Ao, C. T. Seagle, A. J. Porwitzky, J.-P. Davis, K. R. Cochrane, D. H. Dolan, J.-F. Lin, T. Ditmire, and A. C. Bernstein, “Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions,” J. Geophys. Res.: Solid Earth 126(3), e2020JB020008, (2021).10.1029/2020jb020008
    [14]
    G.-J. Li, Z.-G. Li, Q.-F. Chen, Y.-J. Gu, W. Zhang, L. Liu, H.-Y. Geng, Z.-Q. Wang, Y.-S. Lan, Y. Hou, J.-Y. Dai, and X.-R. Chen, “Multishock to quasi-isentropic compression of dense gaseous deuterium-helium mixtures up to 120 GPa: Probing the sound velocities relevant to planetary interiors,” Phys. Rev. Lett. 126(7), 075701 (2021).10.1103/physrevlett.126.075701
    [15]
    S. Saeki, “Empirical determination of the three-dimensional isentropic equation of state of polyethylene,” High Pressure Res. 40(2), 219–234 (2020).10.1080/08957959.2020.1740700
    [16]
    K. Miyanishi, N. Ozaki, E. Brambrink, H. G. Wei, A. Benuzzi-Mounaix, A. Ravasio, A. Diziere, T. Vinci, M. Koenig, and R. Kodama, “EOS measurements of pressure standard materials using laser-driven ramp-wave compression technique,” J. Phys.: Conf. Ser. 215, 012199 (2010).10.1088/1742-6596/215/1/012199
    [17]
    H. Park, B. A. Remington, D. Braun, P. Celliers, G. W. Collins, J. Eggert, E. Giraldez, S. L. Pape, T. Lorenz, B. Maddox, A. Hamza, D. Ho, D. Hicks, P. Patel, S. Pollaine, S. Prisbrey, R. Smith, D. Swift, and R. Wallace, “Quasi-isentropic material property studies at extreme pressures: From omega to NIF,” J. Phys.: Conf. Ser. 112(4), 042024 (2008).10.1088/1742-6596/112/4/042024
    [18]
    J. L. Ding and J. R. Asay, “Material characterization with ramp wave experiments,” J. Appl. Phys. 101(7), 073517 (2007).10.1063/1.2709878
    [19]
    V. Fortov, Shock Compression Thermodynamics, Intense Shock Waves on Earth and in Space (Springer International Publishing, Cham, 2021), pp. 19–31.
    [20]
    C. E. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki, H. J. Lee, B. Nagler, H. S. Park, B. A. Remington, R. E. Rudd, M. Sliwa, M. Suggit, D. Swift, F. Tavella, L. Zepeda-Ruiz, and J. S. Wark, “In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics,” Nature 550(7677), 496–499 (2017).10.1038/nature24061
    [21]
    E. M. Bringa, K. Rosolankova, R. E. Rudd, B. A. Remington, J. S. Wark, M. Duchaineau, D. H. Kalantar, J. Hawreliak, and J. Belak, “Shock deformation of face-centred-cubic metals on subnanosecond timescales,” Nat. Mater. 5(10), 805–809 (2006).10.1038/nmat1735
    [22]
    F. González-Cataldo, B. K. Godwal, K. Driver, R. Jeanloz, and B. Militzer, “Model of ramp compression of diamond from ab initio simulations,” Phys. Rev. B 104(13), 134104 (2021).10.1103/physrevb.104.134104
    [23]
    J. R. Macdonald, “Review of some experimental and analytical equations of state,” Rev. Mod. Phys. 41(2), 316–349 (1969).10.1103/revmodphys.41.316
    [24]
    A. Higginbotham, J. Hawreliak, E. M. Bringa, G. Kimminau, N. Park, E. Reed, B. A. Remington, and J. S. Wark, “Molecular dynamics simulations of ramp-compressed copper,” Phys. Rev. B 85(2), 024112 (2012).10.1103/physrevb.85.024112
    [25]
    W. Li, E. N. Hahn, P. S. Branicio, X. Yao, X. Zhang, B. Feng, and T. C. Germann, “Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression,” Int. J. Plast. 138, 102923 (2021).10.1016/j.ijplas.2020.102923
    [26]
    Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, “Solid iron compressed up to 560 GPa,” Phys. Rev. Lett. 111(6), 065501 (2013).10.1103/PhysRevLett.111.065501
    [27]
    A. Lazicki, D. McGonegle, J. R. Rygg, D. G. Braun, D. C. Swift, M. G. Gorman, R. F. Smith, P. G. Heighway, A. Higginbotham, M. J. Suggit, D. E. Fratanduono, F. Coppari, C. E. Wehrenberg, R. G. Kraus, D. Erskine, J. V. Bernier, J. M. McNaney, R. E. Rudd, G. W. Collins, J. H. Eggert, and J. S. Wark, “Metastability of diamond ramp-compressed to 2 terapascals,” Nature 589(7843), 532–535 (2021).10.1038/s41586-020-03140-4
    [28]
    R. F. Smith, J. H. Eggert, R. Jeanloz, T. S. Duffy, D. G. Braun, J. R. Patterson, R. E. Rudd, J. Biener, A. E. Lazicki, A. V. Hamza, J. Wang, T. Braun, L. X. Benedict, P. M. Celliers, and G. W. Collins, “Ramp compression of diamond to five terapascals,” Nature 511(7509), 330–333 (2014).10.1038/nature13526
    [29]
    D. E. Fratanduono, R. F. Smith, S. J. Ali, D. G. Braun, A. Fernandez-Pañella, S. Zhang, R. G. Kraus, F. Coppari, J. M. McNaney, M. C. Marshall, L. E. Kirch, D. C. Swift, M. Millot, J. K. Wicks, and J. H. Eggert, “Probing the solid phase of noble metal copper at terapascal conditions,” Phys. Rev. Lett. 124(1), 015701 (2020).10.1103/physrevlett.124.015701
    [30]
    D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett. 102(7), 075503 (2009).10.1103/physrevlett.102.075503
    [31]
    J. L. Ding and J. R. Asay, “Numerical study of rate-dependent strength behavior under ramp and shock wave loading,” Int. J. Plast. 25(4), 695–714 (2009).10.1016/j.ijplas.2008.12.002
    [32]
    J. L. Ding, “Thermal and mechanical analysis of material response to non-steady ramp and steady shock wave loading,” J. Mech. Phys. Solids 54(2), 237–265 (2006).10.1016/j.jmps.2005.09.003
    [33]
    Z. Xie, W.-R. Jian, S. Xu, I. J. Beyerlein, X. Zhang, X. Yao, and R. Zhang, “Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression,” Int. J. Plast. 157, 103389 (2022).10.1016/j.ijplas.2022.103389
    [34]
    K. Ren, H. Liu, R. Ma, S. Chen, S. Zhang, R. Wang, R. Chen, Y. Tang, S. Li, and F. Lu, “Dynamic compression behavior of TiZrNbV refractory high-entropy alloys upon ultrahigh strain rate loading,” J. Mater. Sci. Technol. 161, 201–219 (2023).10.1016/j.jmst.2023.04.008
    [35]
    D. N. Blaschke, A. Hunter, and D. L. Preston, “Analytic model of the remobilization of pinned glide dislocations: Including dislocation drag from phonon wind,” Int. J. Plast. 131, 102750 (2020).10.1016/j.ijplas.2020.102750
    [36]
    M. W. Guinan and D. J. Steinberg, “Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements,” J. Phys. Chem. Solids 35(11), 1501–1512 (1974).10.1016/s0022-3697(74)80278-7
    [37]
    K. V. Khishchenko and A. E. Mayer, “High- and low-entropy layers in solids behind shock and ramp compression waves,” Int. J. Mech. Sci. 189, 105971 (2021).10.1016/j.ijmecsci.2020.105971
    [38]
    M. Sliwa, D. McGonegle, C. Wehrenberg, C. A. Bolme, P. G. Heighway, A. Higginbotham, A. Lazicki, H. J. Lee, B. Nagler, H. S. Park, R. E. Rudd, M. J. Suggit, D. Swift, F. Tavella, L. Zepeda-Ruiz, B. A. Remington, and J. S. Wark, “Femtosecond X-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum,” Phys. Rev. Lett. 120(26), 265502 (2018).10.1103/physrevlett.120.265502
    [39]
    D. Milathianaki, S. Boutet, G. J. Williams, A. Higginbotham, D. Ratner, A. E. Gleason, M. Messerschmidt, M. M. Seibert, D. C. Swift, P. Hering, J. Robinson, W. E. White, and J. S. Wark, “Femtosecond visualization of lattice dynamics in shock-compressed matter,” Science 342(6155), 220–223 (2013).10.1126/science.1239566
    [40]
    R. F. Smith, J. H. Eggert, A. Jankowski, P. M. Celliers, M. J. Edwards, Y. M. Gupta, J. R. Asay, and G. W. Collins, “Stiff response of aluminum under ultrafast shockless compression to 110 GPA,” Phys. Rev. Lett. 98(6), 065701 (2007).10.1103/physrevlett.98.065701
    [41]
    D. N. Polsin, D. E. Fratanduono, J. R. Rygg, A. Lazicki, R. F. Smith, J. H. Eggert, M. C. Gregor, B. J. Henderson, X. Gong, J. A. Delettrez, R. G. Kraus, P. M. Celliers, F. Coppari, D. C. Swift, C. A. McCoy, C. T. Seagle, J.-P. Davis, S. J. Burns, G. W. Collins, and T. R. Boehly, “X-ray diffraction of ramp-compressed aluminum to 475 GPa,” Phys. Plasmas 25(8), 082709 (2018).10.1063/1.5032095
    [42]
    D. N. Polsin, A. Lazicki, X. Gong, S. J. Burns, F. Coppari, L. E. Hansen, B. J. Henderson, M. F. Huff, M. I. McMahon, M. Millot, R. Paul, R. F. Smith, J. H. Eggert, G. W. Collins, and J. R. Rygg, “Structural complexity in ramp-compressed sodium to 480 GPa,” Nat. Commun. 13(1), 2534 (2022).10.1038/s41467-022-29813-4
    [43]
    R. F. Smith, J. H. Eggert, R. E. Rudd, D. C. Swift, C. A. Bolme, and G. W. Collins, “High strain-rate plastic flow in Al and Fe,” J. Appl. Phys. 110(12), 123515 (2011).10.1063/1.3670001
    [44]
    D. C. Wallace, “Irreversible thermodynamics of overdriven shocks in solids,” Phys. Rev. B 24(10), 5597–5606 (1981).10.1103/physrevb.24.5597
    [45]
    K. Yang, Y. Wu, Y. Wu, F. Huang, T. Chong, Z. Zhang, and X. Zheng, “A unified model of anisotropy, thermoelasticity, inelasticity, phase transition and reaction for high-pressure ramp-loaded RDX single crystal,” Int. J. Plast. 144, 103048 (2021).10.1016/j.ijplas.2021.103048
    [46]
    G. I. Taylor and H. Quinney, “The latent energy remaining in a metal after cold working,” Proc. R. Soc. London, Ser. A 143(849), 307–326 (1934).10.1098/rspa.1934.0004
    [47]
    D. J. Luscher, M. A. Buechler, D. J. Walters, C. A. Bolme, and K. J. Ramos, “On computing the evolution of temperature for materials under dynamic loading,” Int. J. Plast. 111, 188–210 (2018).10.1016/j.ijplas.2018.07.014
    [48]
    D. J. Luscher, J. R. Mayeur, H. M. Mourad, A. Hunter, and M. A. Kenamond, “Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions,” Int. J. Plast. 76, 111–129 (2016).10.1016/j.ijplas.2015.07.007
    [49]
    Y. Cui, T. Wang, S. Luo, Z. Li, and Z. Li, “A discrete–continuous model of three-dimensional dislocation elastodynamics,” Int. J. Plast. 152, 103221 (2022).10.1016/j.ijplas.2022.103221
    [50]
    J. J. Mason, A. J. Rosakis, and G. Ravichandran, “On the strain and strain rate dependence of the fraction of plastic work converted to heat: An experimental study using high speed infrared detectors and the Kolsky bar,” Mech. Mater 17(2), 135–145 (1994).10.1016/0167-6636(94)90054-x
    [51]
    D. Rittel, L. H. Zhang, and S. Osovski, “The dependence of the Taylor–Quinney coefficient on the dynamic loading mode,” J. Mech. Phys. Solids 107, 96–114 (2017).10.1016/j.jmps.2017.06.016
    [52]
    J. C. Nieto-Fuentes, D. Rittel, and S. Osovski, “On a dislocation-based constitutive model and dynamic thermomechanical considerations,” Int. J. Plast. 108, 55–69 (2018).10.1016/j.ijplas.2018.04.012
    [53]
    J. C. Nieto-Fuentes, S. Osovski, A. Venkert, and D. Rittel, “Reassessment of the dynamic thermomechanical conversion in metals,” Phys. Rev. Lett. 123(25), 255502 (2019).10.1103/physrevlett.123.255502
    [54]
    A. Zubelewicz, “Century-long Taylor-Quinney interpretation of plasticity-induced heating reexamined,” Sci. Rep. 9(1), 9088 (2019).10.1038/s41598-019-45533-0
    [55]
    N. C. Ferreri, Z. Feng, D. J. Savage, D. W. Brown, B. Clausen, T. A. Sisneros, and M. Knezevic, “In-situ high-energy X-ray diffraction and crystal plasticity modeling to predict the evolution of texture, twinning, lattice strains and strength during loading and reloading of beryllium,” Int. J. Plast. 150, 103217 (2022).10.1016/j.ijplas.2022.103217
    [56]
    Q.-l. Xiong, Z. Li, T. Shimada, and T. Kitamura, “Atomistic investigation on the conversion of plastic work to heat in high-rate shear deformation,” Int. J. Plast. 149, 103158 (2022).10.1016/j.ijplas.2021.103158
    [57]
    J. C. Stimac, N. Bertin, J. K. Mason, and V. V. Bulatov, “Energy storage under high-rate compression of single crystal tantalum,” Acta Mater. 239, 118253 (2022).10.1016/j.actamat.2022.118253
    [58]
    J. S. Langer, “Statistical thermodynamics of crystal plasticity,” J. Stat. Phys 175(3), 531–541 (2019).10.1007/s10955-019-02221-7
    [59]
    E. Bouchbinder and J. S. Langer, “Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory,” Phys. Rev. E 80(3), 031132 (2009).10.1103/physreve.80.031132
    [60]
    K. C. Le, T. M. Tran, and J. S. Langer, “Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel,” Phys. Rev. E 96(1), 013004 (2017).10.1103/physreve.96.013004
    [61]
    J. S. Langer, E. Bouchbinder, and T. Lookman, “Thermodynamic theory of dislocation-mediated plasticity,” Acta Mater. 58(10), 3718–3732 (2010).10.1016/j.actamat.2010.03.009
    [62]
    K. C. Le, “Two universal laws for plastic flows and the consistent thermodynamic dislocation theory,” Mech. Res. Commun. 109, 103597 (2020).10.1016/j.mechrescom.2020.103597
    [63]
    J. S. Langer and K. C. Le, “Scaling confirmation of the thermodynamic dislocation theory,” Proc. Natl. Acad. Sci. U. S. A. 117(47), 29431–29434 (2020).10.1073/pnas.2018647117
    [64]
    S. Roy Chowdhury and D. Roy, “A non-equilibrium thermodynamic model for viscoplasticity and damage: Two temperatures and a generalized fluctuation relation,” Int. J. Plast. 113, 158–184 (2019).10.1016/j.ijplas.2018.09.014
    [65]
    S.-C. Dai, Z.-C. Xie, and Y.-J. Wang, “Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy,” Int. J. Plast. 149, 103155 (2022).10.1016/j.ijplas.2021.103155
    [66]
    V. L. Berdichevsky, “Entropy of microstructure,” J. Mech. Phys. Solids 56(3), 742–771 (2008).10.1016/j.jmps.2007.07.004
    [67]
    V. L. Berdichevsky, “Thermodynamics of microstructure evolution: Grain growth,” Int. J. Eng. Sci. 57, 50–78 (2012).10.1016/j.ijengsci.2012.03.038
    [68]
    V. L. Berdichevsky, “Beyond classical thermodynamics: Dislocation-mediated plasticity,” J. Mech. Phys. Solids 129, 83–118 (2019).10.1016/j.jmps.2019.04.014
    [69]
    W. Rao, Y. Chen, and L.-H. Dai, “A constitutive model for metallic glasses based on two-temperature nonequilibrium thermodynamics,” Int. J. Plast. 154, 103309 (2022).10.1016/j.ijplas.2022.103309
    [70]
    R. Xiao, C. Tian, Y. Xu, and P. Steinmann, “Thermomechanical coupling in glassy polymers: An effective temperature theory,” Int. J. Plast. 156, 103361 (2022).10.1016/j.ijplas.2022.103361
    [71]
    S. Ogata, F. Shimizu, J. Li, M. Wakeda, and Y. Shibutani, “Atomistic simulation of shear localization in Cu–Zr bulk metallic glass,” Intermetallics 14(8), 1033–1037 (2006).10.1016/j.intermet.2006.01.022
    [72]
    Y. Wang, Y. Wang, and J. Zhang, “Connecting shear localization with the long-range correlated polarized stress fields in granular materials,” Nat. Commun. 11(1), 4349 (2020).10.1038/s41467-020-18217-x
    [73]
    R. Alvarez-Donado and A. Antonelli, “Splitting up entropy into vibrational and configurational contributions in bulk metallic glasses: A thermodynamic approach,” Phys. Rev. Res. 2(1), 013202 (2020).10.1103/physrevresearch.2.013202
    [74]
    Y. Q. Cheng, E. Ma, and H. W. Sheng, “Atomic level structure in multicomponent bulk metallic glass,” Phys. Rev. Lett. 102(24), 245501 (2009).10.1103/physrevlett.102.245501
    [75]
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 1–19 (1995).10.1006/jcph.1995.1039
    [76]
    A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).10.1016/j.cpc.2021.108171
    [77]
    A. E. Mattsson and W. J. Rider, “Artificial viscosity: Back to the basics,” Int. J. Numer. Methods Fluids 77(7), 400–417 (2015).10.1002/fld.3981
    [78]
    D. Poulikakos and S. Maruyama, Microscale Thermophys. Eng. 7(3), 181–206 (2003).10.1080/10893950390219047
    [79]
    Y. Zhou, Z.-Y. Dong, W.-P. Hsieh, A. F. Goncharov, and X.-J. Chen, “Thermal conductivity of materials under pressure,” Nat. Rev. Phys. 4(5), 319–335 (2022).10.1038/s42254-022-00423-9
    [80]
    B. Shi, S. Yang, S. Liu, and P. Jin, “Lindemann-like rule between average thermal expansion coefficient and glass transition temperature for metallic glasses,” J. Non-Cryst. Solids 503–504, 194–196 (2019).10.1016/j.jnoncrysol.2018.09.044
    [81]
    H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, “Atomic packing and short-to-medium-range order in metallic glasses,” Nature 439(7075), 419–425 (2006).10.1038/nature04421
    [82]
    H. L. Peng, M. Z. Li, and W. H. Wang, “Structural signature of plastic deformation in metallic glasses,” Phys. Rev. Lett. 106(13), 135503 (2011).10.1103/physrevlett.106.135503
    [83]
    D. Han, D. Wei, P.-H. Cao, Y.-J. Wang, and L.-H. Dai, “Statistical complexity of potential energy landscape as a dynamic signature of the glass transition,” Phys. Rev. B 101(6), 064205 (2020).10.1103/physrevb.101.064205
    [84]
    P. G. Heighway, M. Sliwa, D. McGonegle, C. Wehrenberg, C. A. Bolme, J. Eggert, A. Higginbotham, A. Lazicki, H. J. Lee, B. Nagler, H. S. Park, R. E. Rudd, R. F. Smith, M. J. Suggit, D. Swift, F. Tavella, B. A. Remington, and J. S. Wark, “Nonisentropic release of a shocked solid,” Phys. Rev. Lett. 123(24), 245501 (2019).10.1103/physrevlett.123.245501
    [85]
    F. Shimizu, S. Ogata, and J. Li, “Theory of shear banding in metallic glasses and molecular dynamics calculations,” Mater. Trans. 48(11), 2923–2927 (2007).10.2320/matertrans.mj200769
    [86]
    A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).10.1088/0965-0393/18/1/015012
    [87]
    D. Frenkel and A. J. C. Ladd, “New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres,” J. Chem. Phys. 81(7), 3188–3193 (1984).10.1063/1.448024
    [88]
    X. Y. Li, H. P. Zhang, S. Lan, D. L. Abernathy, T. Otomo, F. W. Wang, Y. Ren, M. Z. Li, and X. L. Wang, “Observation of high-frequency transverse phonons in metallic glasses,” Phys. Rev. Lett. 124(22), 225902 (2020).10.1103/physrevlett.124.225902
    [89]
    W. L. Johnson and K. Samwer, “A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence,” Phys. Rev. Lett. 95(19), 195501 (2005).10.1103/physrevlett.95.195501
    [90]
    B. Luo, G. Wang, F. Tan, J. Zhao, C. Liu, and C. Sun, “Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading,” AIP Adv. 5(6), 067161 (2015).10.1063/1.4923318
    [91]
    T. J. Vogler, “On measuring the strength of metals at ultrahigh strain rates,” J. Appl. Phys. 106(5), 053530 (2009).10.1063/1.3204777
    [92]
    B. Gurrutxaga-Lerma, D. S. Balint, D. Dini, D. E. Eakins, and A. P. Sutton, “Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics,” Phys. Rev. Lett. 114(17), 174301 (2015).10.1103/physrevlett.114.174301
    [93]
    F. H. Stillinger, “A topographic view of supercooled liquids and glass formation,” Science 267(5206), 1935–1939 (1995).10.1126/science.267.5206.1935
    [94]
    F. H. Stillinger and P. G. Debenedetti, “Energy landscape diversity and supercooled liquid properties,” J. Chem. Phys. 116(8), 3353–3361 (2002).10.1063/1.1434997
    [95]
    R. Mahjoub, N. E. Hamilton, K. J. Laws, and M. Ferry, “Softening of phonon spectra in metallic glasses,” npj Comput. Mater. 2(1), 16029 (2016).10.1038/npjcompumats.2016.29
    [96]
    D. Han, D. Wei, J. Yang, H.-L. Li, M.-Q. Jiang, Y.-J. Wang, L.-H. Dai, and A. Zaccone, “Atomistic structural mechanism for the glass transition: Entropic contribution,” Phys. Rev. B 101(1), 014113 (2020).10.1103/physrevb.101.014113
    [97]
    G. Ding, C. Li, A. Zaccone, W. H. Wang, H. C. Lei, F. Jiang, Z. Ling, and M. Q. Jiang, “Ultrafast extreme rejuvenation of metallic glasses by shock compression,” Sci. Adv. 5(8), eaaw6249 (2019).10.1126/sciadv.aaw6249
    [98]
    P. Hähner, K. Bay, and M. Zaiser, “Fractal dislocation patterning during plastic deformation,” Phys. Rev. Lett. 81(12), 2470–2473 (1998).10.1103/physrevlett.81.2470
    [99]
    A. Vinogradov, I. S. Yasnikov, and Y. Estrin, “Evolution of fractal structures in dislocation ensembles during plastic deformation,” Phys. Rev. Lett. 108(20), 205504 (2012).10.1103/physrevlett.108.205504
    [100]
    E. Bouchbinder and J. S. Langer, “Nonequilibrium thermodynamics of driven amorphous materials. I. Internal degrees of freedom and volume deformation,” Phys. Rev. E 80(3), 031131 (2009).10.1103/physreve.80.031131
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (59) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return