Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Chen Chaoxin, Gong Tao, Li Zhichao, Hao Liang, Liu Yonggang, Liu Xiangming, Zhao Hang, Liu Yaoyuan, Pan Kaiqiang, Li Qi, Li Sanwei, Li Zhijun, Jin Sai, Wang Feng, Yang Dong. Study of the spatial growth of stimulated Brillouin scattering in a gas-filled hohlraum via detecting the driven ion acoustic wave[J]. Matter and Radiation at Extremes, 2024, 9(2): 027601. doi: 10.1063/5.0173023
Citation: Chen Chaoxin, Gong Tao, Li Zhichao, Hao Liang, Liu Yonggang, Liu Xiangming, Zhao Hang, Liu Yaoyuan, Pan Kaiqiang, Li Qi, Li Sanwei, Li Zhijun, Jin Sai, Wang Feng, Yang Dong. Study of the spatial growth of stimulated Brillouin scattering in a gas-filled hohlraum via detecting the driven ion acoustic wave[J]. Matter and Radiation at Extremes, 2024, 9(2): 027601. doi: 10.1063/5.0173023

Study of the spatial growth of stimulated Brillouin scattering in a gas-filled hohlraum via detecting the driven ion acoustic wave

doi: 10.1063/5.0173023
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: gongtao_lfrc@163.com
  • Received Date: 2023-08-19
  • Accepted Date: 2023-11-30
  • Available Online: 2024-03-01
  • Publish Date: 2024-03-01
  • In an experiment performed on the Shenguang-III prototype laser facility, collective Thomson scattering (TS) is used to study the spatial growth of stimulated Brillouin scattering (SBS) in a gas-filled hohlraum by detecting the SBS-driven ion acoustic wave. High-quality time-resolved SBS and TS spectra are obtained simultaneously in the experiment, and these are analyzed by a steady-state code based on the ray-tracing model. The analysis indicates that ion–ion collisions may play an important role in suppressing SBS growth in the Au plasma; as a result, the SBS excited in the filled gas region is dominant. In the early phase of the laser pulse, SBS originates primarily from the high-density plasma at the edges of the interaction beam channel, which is piled up by the heating of the interaction beam. Throughout the duration of the laser pulse, the presence of the TS probe beam might mitigate SBS by perturbing the density distribution around the region overlapping with the interaction beam.
  • loading
  • [1]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).10.1063/1.1578638
    [2]
    W. Kruer, The Physics of Laser Plasma Interactions (CRC Press, 2019).
    [3]
    J. Ralph, A. Kemp, N. Meezan, R. Berger, D. Strozzi, B. MacGowan, O. Landen, N. Lemos, M. Belyaev, M. Biener et al., “The effects of multispecies hohlraum walls on stimulated brillouin scattering, hohlraum dynamics, and beam propagation,” Phys. Plasmas 28, 072704 (2021).10.1063/5.0044404
    [4]
    G. Hall, O. Jones, D. Strozzi, J. Moody, D. Turnbull, J. Ralph, P. Michel, M. Hohenberger, A. Moore, O. Landen et al., “The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility,” Phys. Plasmas 24, 052706 (2017).10.1063/1.4983142
    [5]
    R. Berger, C. A. Thomas, K. Baker, D. Casey, C. Goyon, J. Park, N. Lemos, S. Khan, M. Hohenberger, J. Milovich et al., “Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility,” Phys. Plasmas 26, 012709 (2019).10.1063/1.5079234
    [6]
    T. Chapman, P. Michel, J.-M. Di Nicola, R. Berger, P. Whitman, J. Moody, K. Manes, M. Spaeth, M. Belyaev, C. Thomas, and B. J. MacGowan, “Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target,” J. Appl. Phys. 125, 033101 (2019).10.1063/1.5070066
    [7]
    H. Abu-Shawareb, R. Acree, P. Adams, J. Adams, B. Addis, R. Aden, P. Adrian, B. Afeyan, M. Aggleton, L. Aghaian et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).10.1103/physrevlett.129.075001
    [8]
    A. Kritcher, A. Zylstra, D. Callahan, O. Hurricane, C. Weber, J. Ralph, D. Casey, A. Pak, K. Baker, B. Bachmann et al., “Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E,” Phys. Plasmas 28, 072706 (2021).10.1063/5.0047841
    [9]
    S. Haan, J. Lindl, D. Callahan, D. Clark, J. Salmonson, B. Hammel, L. Atherton, R. Cook, M. Edwards, S. Glenzer et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169
    [10]
    M. Edwards, P. Patel, J. Lindl, L. Atherton, S. Glenzer, S. Haan, J. Kilkenny, O. Landen, E. Moses, A. Nikroo et al., “Progress towards ignition on the National Ignition Facility,” Phys. Plasmas 20, 070501 (2013).10.1063/1.4816115
    [11]
    T. Dittrich, O. Hurricane, D. Callahan, E. Dewald, T. Döppner, D. Hinkel, L. Berzak Hopkins, S. Le Pape, T. Ma, J. Milovich et al., “Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility,” Phys. Rev. Lett. 112, 055002 (2014).10.1103/physrevlett.112.055002
    [12]
    R. Kirkwood, J. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol, P. Michel, D. Hinkel, R. Berger, E. Williams et al., “A review of laser–plasma interaction physics of indirect-drive fusion,” Plasma Phys. Controlled Fusion 55, 103001 (2013).10.1088/0741-3335/55/10/103001
    [13]
    S. Glenzer, L. Divol, R. Berger, C. Geddes, R. Kirkwood, J. Moody, E. Williams, and P. Young, “Thomson scattering measurements of saturated ion waves in laser fusion plasmas,” Phys. Rev. Lett. 86, 2565 (2001).10.1103/physrevlett.86.2565
    [14]
    P. Masson-Laborde, M. Monteil, V. Tassin, F. Philippe, P. Gauthier, A. Casner, S. Depierreux, C. Neuville, B. Villette, S. Laffite et al., “Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums,” Phys. Plasmas 23, 022703 (2016).10.1063/1.4941706
    [15]
    N. Meezan, L. Atherton, D. Callahan, E. Dewald, S. Dixit, E. Dzenitis, M. Edwards, C. Haynam, D. Hinkel, O. Jones et al., “National Ignition Campaign Hohlraum energetics,” Phys. Plasmas 17, 056304 (2010).10.1063/1.3354110
    [16]
    T. Gong, L. Hao, Z. Li, D. Yang, S. Li, X. Li, L. Guo, S. Zou, Y. Liu, X. Jiang et al., “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446
    [17]
    D. Strozzi, E. Williams, D. Hinkel, D. Froula, R. London, and D. Callahan, “Ray-based calculations of backscatter in laser fusion targets,” Phys. Plasmas 15, 102703 (2008).10.1063/1.2992522
    [18]
    L. Hao, Y. Zhao, D. Yang, Z. Liu, X. Hu, C. Zheng, S. Zou, F. Wang, X. Peng, Z. Li et al., “Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code,” Phys. Plasmas 21, 072705 (2014).10.1063/1.4890019
    [19]
    T. Gong, Z. Li, B. Zhao, G.-y. Hu, and J. Zheng, “Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach,” Phys. Plasmas 20, 092702 (2013).10.1063/1.4821827
    [20]
    T. Gong, J. Zheng, Z. Li, Y. Ding, D. Yang, G. Hu, and B. Zhao, “Mitigating stimulated scattering processes in gas-filled hohlraums via external magnetic fields,” Phys. Plasmas 22, 092706 (2015).10.1063/1.4931077
    [21]
    L. Hao, D. Yang, X. Li, Z. Li, Y. Liu, H. Cai, Z. Liu, P. Gu, T. Xu, S. Li et al., “Investigation on laser plasma instability of the outer ring beams on SGIII laser facility,” AIP Adv. 9, 095201 (2019).10.1063/1.5087936
    [22]
    D. H. Froula, Plasma Scattering of Electromagnetic Radiation (Academic Press is an imprint of Elsevier, 2011), p. 8.
    [23]
    D. Froula, L. Divol, and S. Glenzer, “Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering,” Phys. Rev. Lett. 88, 105003 (2002).10.1103/physrevlett.88.105003
    [24]
    D. Froula, L. Divol, A. MacKinnon, G. Gregori, and S. Glenzer, “Direct observation of stimulated-Brillouin-scattering detuning by a velocity gradient,” Phys. Rev. Lett. 90, 155003 (2003).10.1103/physrevlett.90.155003
    [25]
    H. Bandulet, C. Labaune, K. Lewis, and S. Depierreux, “Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability,” Phys. Rev. Lett. 93, 035002 (2004).10.1103/physrevlett.93.035002
    [26]
    C. Chen, T. Gong, Z. Li, H. Zhao, D. Yang, X. Jiang, Y. Liu, Z. Li, S. Jin, R. Zhao et al., “Implementation of a large-aperture Thomson scattering system for diagnosing driven ion acoustic waves on Shenguang-III prototype laser facility,” J. Instrum. 17, P05017 (2022).10.1088/1748-0221/17/05/p05017
    [27]
    H. Yong, P. Song, C.-L. Zhai, D.-G. Kang, J.-F. Gu, X.-D. Hang, P.-J. Gu, and S. Jiang, “Numerical simulation of 2-D radiation-drive ignition implosion process,” Commun. Theor. Phys. 59, 737 (2013).10.1088/0253-6102/59/6/15
    [28]
    H. Zhao, Z. Li, D. Yang, X. Li, Y. Chen, X. Jiang, Y. Liu, T. Gong, L. Guo, S. Li et al., “Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums,” Matter Radiat. Extremes 4, 055201 (2019).10.1063/1.5090971
    [29]
    F. L. Hinton, “Collisional transport in plasma,” in Handbook of Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland Publishing Company, 1983), p. 158.
    [30]
    J. Zheng, C. Yu, and Z. Zheng, “The dynamic form factor for ion-collisional plasmas,” Phys. Plasmas 6, 435–443 (1999).10.1063/1.873209
    [31]
    J. F. Drake, P. K. Kaw, Y.-C. Lee, G. Schmid, C. S. Liu, and M. N. Rosenbluth, “Parametric instabilities of electromagnetic waves in plasmas,” Phys. Fluids 17, 778–785 (1974).10.1063/1.1694789
    [32]
    D. Froula, L. Divol, D. Braun, B. Cohen, G. Gregori, A. Mackinnon, E. Williams, S. Glenzer, H. Baldis, D. Montgomery, and R. P. Johnson, “Stimulated Brillouin scattering in the saturated regime,” Phys. Plasmas 10, 1846–1853 (2003).10.1063/1.1542887
    [33]
    C. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).10.1063/1.1703144
    [34]
    D. Turnbull, J. Katz, M. Sherlock, L. Divol, N. Shaffer, D. Strozzi, A. Colaïtis, D. Edgell, R. Follett, K. McMillen et al., “Inverse bremsstrahlung absorption,” Phys. Rev. Lett. 130, 145103 (2023).10.1103/physrevlett.130.145103
    [35]
    K. Molvig, A. N. Simakov, and E. L. Vold, “Classical transport equations for burning gas-metal plasmas,” Phys. Plasmas 21, 092709 (2014).10.1063/1.4895666
    [36]
    D. Froula, L. Divol, A. Offenberger, N. Meezan, T. Ao, G. Gregori, C. Niemann, D. Price, C. Smith, and S. Glenzer, “Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping-induced frequency shifts,” Phys. Rev. Lett. 93, 035001 (2004).10.1103/physrevlett.93.035001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (60) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return