Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Zhang Xiaopeng, Zhao Jiarui, Xu Shengxuan, Chen Xun, Gao Ying, Chen Shiyou, Zhu Kun, Yan Xueqing, Ma Wenjun. Human radiological safety assessment for petawatt laser-driven ion acceleration experiments in CLAPA-T[J]. Matter and Radiation at Extremes, 2024, 9(4): 047201. doi: 10.1063/5.0172687
Citation: Zhang Xiaopeng, Zhao Jiarui, Xu Shengxuan, Chen Xun, Gao Ying, Chen Shiyou, Zhu Kun, Yan Xueqing, Ma Wenjun. Human radiological safety assessment for petawatt laser-driven ion acceleration experiments in CLAPA-T[J]. Matter and Radiation at Extremes, 2024, 9(4): 047201. doi: 10.1063/5.0172687

Human radiological safety assessment for petawatt laser-driven ion acceleration experiments in CLAPA-T

doi: 10.1063/5.0172687
More Information
  • Author Bio:

    Electronic mail: wenjun.ma@pku.edu.cn

  • Corresponding author: a)Author to whom correspondence should be addressed: jrzhao@pku.edu.cn
  • Received Date: 2023-08-17
  • Accepted Date: 2024-03-17
  • Available Online: 2024-07-01
  • Publish Date: 2024-07-01
  • The newly built Compact Laser Plasma Accelerator–Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration. Driven by this petawatt laser facility, proton beams with energy up to 200 MeV are expected to be generated for tumor therapy. During high-repetition operation, both prompt radiation and residual radiation may cause safety problems. Therefore, human radiological safety assessment before commissioning is essential. In this paper, we simulate both prompt and residual radiation using the Geant4 and FLUKA Monte Carlo codes with reasonable proton and as-produced electron beam parameters. We find that the prompt radiation can be shielded well by the concrete wall of the experimental hall, but the risk from residual radiation is nonnegligible and necessitates adequate radiation cooling. On the basis of the simulation results, we discuss the constraints imposed by radiation safety considerations on the annual working time, and we propose radiation cooling strategies for different shooting modes.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Author Contributions
    Xiaopeng Zhang: Data curation (lead); Formal analysis (lead); Software (lead); Visualization (lead); Writing – original draft (equal); Writing – review & editing (equal). Jiarui Zhao: Conceptualization (lead); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (lead); Supervision (equal); Writing – original draft (lead); Writing – review & editing (lead). Shengxuan Xu: Investigation (equal); Visualization (equal). Xun Chen: Formal analysis (equal); Investigation (equal); Methodology (equal). Ying Gao: Conceptualization (equal); Investigation (equal). Shiyou Chen: Investigation (equal); Methodology (equal); Software (equal). Kun Zhu: Conceptualization (equal); Supervision (equal). Xueqing Yan: Conceptualization (equal); Project administration (equal); Supervision (equal). Wenjun Ma: Conceptualization (lead); Funding acquisition (lead); Investigation (equal); Methodology (equal); Project administration (equal); Supervision (lead); Writing – original draft (equal); Writing – review & editing (equal).
    X.P.Z. and J.R.Z. contributed equally to this work. X.P.Z., J.R.Z., and W.J.M. conceived of the paper. X.P.Z. and J.R.Z. constructed the simulations and wrote the original manuscript. W.J.M. reformatted the manuscript for publication. All other authors contributed to the discussion of the results.
    The data that support the findings of this study are available within the article.
  • loading
  • [1]
    C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps, S. David, J. Barbe, E. Etter, G. Matras, S. Ricaud, V. Leroux, C. Richard, F. Lureau, A. Baleanu, R. Banici, A. Gradinariu, C. Caldararu, C. Capiteanu, A. Naziru, B. Diaconescu, V. Iancu, R. Dabu, D. Ursescu, I. Dancus, C. A. Ur, K. A. Tanaka, and N. V. Zamfir, “10 PW peak power femtosecond laser pulses at ELI-NP,” High Power Laser Sci. Eng. 10, e21 (2022).10.1017/hpl.2022.11
    [2]
    D. N. Papadopoulos, J. P. Zou, C. Le Blanc, G. Chériaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fréneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, and P. Audebert, “The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).10.1017/hpl.2016.34
    [3]
    J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, “Realization of laser intensity over 1023 W/cm2,” Optica 8, 630 (2021).10.1364/optica.420520
    [4]
    T. Ziegler, D. Albach, C. Bernert, S. Bock, F.-E. Brack, T. E. Cowan, N. P. Dover, M. Garten, L. Gaus, R. Gebhardt, I. Goethel, U. Helbig, A. Irman, H. Kiriyama, T. Kluge, A. Kon, S. Kraft, F. Kroll, M. Loeser, J. Metzkes-Ng, M. Nishiuchi, L. Obst-Huebl, T. Püschel, M. Rehwald, H.-P. Schlenvoigt, U. Schramm, and K. Zeil, “Proton beam quality enhancement by spectral phase control of a PW-class laser system,” Sci. Rep. 11, 7338 (2021).10.1038/s41598-021-86547-x
    [5]
    W. J. Ma, I. J. Kim, J. Q. Yu, I. W. Choi, P. K. Singh, H. W. Lee, J. H. Sung, S. K. Lee, C. Lin, Q. Liao, J. G. Zhu, H. Y. Lu, B. Liu, H. Y. Wang, R. F. Xu, X. T. He, J. E. Chen, M. Zepf, J. Schreiber, X. Q. Yan, and C. H. Nam, “Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil,” Phys. Rev. Lett. 122, 014803 (2019).10.1103/physrevlett.122.014803
    [6]
    P. Wang, Z. Gong, S. G. Lee, Y. Shou, Y. Geng, C. Jeon, I. J. Kim, H. W. Lee, J. W. Yoon, J. H. Sung, S. K. Lee, D. Kong, J. Liu, Z. Mei, Z. Cao, Z. Pan, I. W. Choi, X. Yan, C. H. Nam, and W. Ma, “Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity,” Phys. Rev. X 11, 021049 (2021).10.1103/physrevx.11.021049
    [7]
    K. D. Wang, K. Zhu, M. J. Easton, Y. J. Li, C. Lin, and X. Q. Yan, “Achromatic beamline design for a laser-driven proton therapy accelerator,” Phys. Rev. Accel. Beams 23, 111302 (2020).10.1103/physrevaccelbeams.23.111302
    [8]
    K. D. Wang, K. Zhu, M. J. Easton, Y. J. Li, K. Wang, X. C. Xie, H. Y. Lan, S. X. Cai, H. Wang, H. L. Ge, T. R. Zhu, J. Li, C. J. Zhang, X. Y. Zhao, C. Lin, and X. Q. Yan, “Beam distribution homogenization design for laser-driven proton therapy accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. A 1040, 167196 (2022).10.1016/j.nima.2022.167196
    [9]
    T. Tajima, D. Habs, and X. Yan, “Laser acceleration of ions for radiation therapy,” in Reviews of Accelerator Science and Technology (World Scientific, 2009), pp. 201–228.
    [10]
    R. R. Wilson, “Radiological use of fast protons,” Radiology 47, 487–491 (1946).10.1148/47.5.487
    [11]
    M. Okamura, “Laser ion source for heavy ion inertial fusion,” Matter Radiat. Extremes 3, 61–66 (2018).10.1016/j.mre.2017.12.002
    [12]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, and G. A. Wurden, “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
    [13]
    M. Zimmer, S. Scheuren, A. Kleinschmidt, N. Mitura, A. Tebartz, G. Schaumann, T. Abel, T. Ebert, M. Hesse, Ş. Zähter, S. C. Vogel, O. Merle, R.-J. Ahlers, S. Duarte Pinto, M. Peschke, T. Kröll, V. Bagnoud, C. Rödel, and M. Roth, “Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source,” Nat. Commun. 13, 1173 (2022).10.1038/s41467-022-28756-0
    [14]
    A. Cimmino, V. Olšovcová, R. Versaci, D. Horváth, B. Lefebvre, A. Tsinganis, V. Stránský, R. Truneček, and Z. Trunečková, “Radiation protection at petawatt laser-driven accelerator facilities: The ELI beamlines case,” Nucl. Sci. Eng. 198, 245–263 (2023).10.1080/00295639.2023.2191585
    [15]
    S. Bechet, R. Versaci, S. Rollet, V. Olsovcova, A. Fajstavr, M. Zakova, and D. Margarone, “Radiation protection of a proton beamline at ELI-beamlines,” J. Instrum. 11, C12019 (2016).10.1088/1748-0221/11/12/c12019
    [16]
    [17]
    V. Olšovcová, R. Haley, L. MacFarlene, B. Rus, and M. Griffiths, “Bulk shielding for laser research centre ELI beamlines,” Prog. Nucl. Sci. Technol. 4, 247–251 (2014).10.15669/pnst.4.247
    [18]
    A. Fasso, A. Ferrari, V. Olsovcova, N. Shetty, and R. Versaci, “An activation database for materials used at high intensity laser acceleration facilities,” in Proceedings of SATIF-13, Dresden, Germany (OECD/NEA, 2018), pp. 422–429.
    [19]
    R. J. Clarke, S. Dorkings, R. Heathcote, K. Markey, and D. Neely, “Proton activation history on the Vulcan high-intensity petawatt laser facility,” Laser Part. Beams 32, 455–460 (2014).10.1017/s026303461400038x
    [20]
    M. Tisi, V. Mares, J. Schreiber, F. S. Englbrecht, and W. Rühm, “Geant4 Monte Carlo simulation study of the secondary radiation fields at the laser-driven ion source LION,” Sci. Rep. 11, 24418 (2021).10.1038/s41598-021-03897-2
    [21]
    A. Ferrari, E. Amato, D. Margarone, T. Cowan, and G. Korn, “Radiation field characterization and shielding studies for the ELI beamlines facility,” Appl. Surf. Sci. 272, 138–144 (2013), part of Special Issue: 5th Workshop on Plasma Production by Laser Ablation (PPLA2011).10.1016/j.apsusc.2012.09.105
    [22]
    M. G. Florescu, O. G. Duliu, D. Pantazi, C. M. Ticos, D. Sporea, R. Vasilache, V. Ionescu, and M. Oane, “Radiological safety assessment for the experimental area of a hyper-intense laser with peak—power of 1 PW—CETAL,” Radiat. Prot. Dosim. 175, 104–109 (2016).10.1093/rpd/ncw274
    [23]
    G. Battistoni, T. Boehlen, F. Cerutti, P. W. Chin, L. S. Esposito, A. Fassò, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P. G. Ortega, J. Ranft, S. Roesler, P. R. Sala, V. Vlachoudis, and G. Smirnov, “Overview of the FLUKA code,” Ann. Nucl. Energy 82, 10–18 (2015), part of Special Issue: Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical Simulation Paradigms.10.1016/j.anucene.2014.11.007
    [24]
    C. Ahdida, D. Bozzato, D. Calzolari, F. Cerutti, N. Charitonidis, A. Cimmino, A. Coronetti, G. L. D’Alessandro, A. Donadon Servelle, L. S. Esposito, R. Froeschl, R. García Alía, A. Gerbershagen, S. Gilardoni, D. Horváth, G. Hugo, A. Infantino, V. Kouskoura, A. Lechner, B. Lefebvre, G. Lerner, M. Magistris, A. Manousos, G. Moryc, F. Ogallar Ruiz, F. Pozzi, D. Prelipcean, S. Roesler, R. Rossi, M. Sabaté Gilarte, F. Salvat Pujol, P. Schoofs, V. Stránský, C. Theis, A. Tsinganis, R. Versaci, V. Vlachoudis, A. Waets, and M. Widorski, “New capabilities of the FLUKA multi-purpose code,” Front. Phys. 9, 788253 (2022).10.3389/fphy.2021.788253
    [25]
    [26]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).10.1016/s0168-9002(03)01368-8
    [27]
    [28]
    D. Margarone, I. J. Kim, J. Psikal, J. Kaufman, T. Mocek, I. W. Choi, L. Stolcova, J. Proska, A. Choukourov, I. Melnichuk, O. Klimo, J. Limpouch, J. H. Sung, S. K. Lee, G. Korn, and T. M. Jeong, “Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target,” Phys. Rev. Spec. Top.-Accel. Beams 18, 071304 (2015).10.1103/physrevstab.18.071304
    [29]
    M. Pelliccioni, “Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code,” Radiat. Prot. Dosim. 88, 279–297 (2000).10.1093/oxfordjournals.rpd.a033046
    [30]
    C. Bungau, A. Bungau, R. Cywinski, R. Barlow, T. R. Edgecock, P. Carlsson, H. Danared, F. Mezei, A. I. S. Holm, S. P. Møller, and H. D. Thomsen, “Induced activation in accelerator components,” Phys. Rev. Spec. Top.-Accel. Beams 17, 084701 (2014).10.1103/physrevstab.17.084701
    [31]
    C.-S. Gil, D. H. Kim, and J. Kim, “Activation analyses of beam dump materials irradiated by 100-MeV protons,” J. Korean Phys. Soc. 50, 1396 (2007).10.3938/jkps.50.1396
    [32]
    [33]
    ICRP, “The 2007 recommendations of the international commission on radiological protection. ICRP publication 103,” Ann. ICRP 37, 1–332 (2007).10.1016/j.icrp.2007.10.003
    [34]
    A. D. Wrixon, “New ICRP recommendations,” J. Radiol. Prot. 28, 161–168 (2008).10.1088/0952-4746/28/2/r02
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (80) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return