Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Wang W. Q., Honrubia J. J., Yin Y., Yang X. H., Shao F. Q.. Resistive field generation in intense proton beam interaction with solid targets[J]. Matter and Radiation at Extremes, 2024, 9(1): 015603. doi: 10.1063/5.0172035
Citation: Wang W. Q., Honrubia J. J., Yin Y., Yang X. H., Shao F. Q.. Resistive field generation in intense proton beam interaction with solid targets[J]. Matter and Radiation at Extremes, 2024, 9(1): 015603. doi: 10.1063/5.0172035

Resistive field generation in intense proton beam interaction with solid targets

doi: 10.1063/5.0172035
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: weiquan.wang@nudt.edu.cn
  • Received Date: 2023-08-12
  • Accepted Date: 2023-11-05
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • The Brown–Preston–Singleton (BPS) stopping power model is added to our previously developed hybrid code to model ion beam–plasma interaction. Hybrid simulations show that both resistive field and ion scattering effects are important for proton beam transport in a solid target, in which they compete with each other. When the target is not completely ionized, the self-generated resistive field effect dominates over the ion scattering effect. However, when the target is completely ionized, this situation is reversed. Moreover, it is found that Ohmic heating is important for higher current densities and materials with high resistivity. The energy fraction deposited as Ohmic heating can be as high as 20%–30%. Typical ion divergences with half-angles of about 5°–10° will modify the proton energy deposition substantially and should be taken into account.
  • loading
  • [1]
    D. Habs, P. G. Thirolf, M. Gross, K. Allinger, J. Bin, A. Henig, D. Kiefer, W. Ma, and J. Schreiber, “Introducing the fission–fusion reaction process: Using a laser-accelerated Th beam to produce neutron-rich nuclei towards the N = 126 waiting point of the r-process,” Appl. Phys. B 103, 471 (2011).10.1007/s00340-010-4261-x
    [2]
    F. Hannachi, M. Aléonard, M. Gerbaux, F. Gobet, G. Malka, C. Plaisir, J. Scheurer, M. Tarisien, P. Audebert, E. Brambrink et al., “Prospects for nuclear physics with lasers,” Plasma Phys. Controlled Fusion 49, B79 (2007).10.1088/0741-3335/49/12b/s06
    [3]
    G. M. Petrov, D. P. Higginson, J. Davis, T. B. Petrova, C. McGuffey, B. Qiao, and F. N. Beg, “Generation of energetic (>15 MeV) neutron beams from proton- and deuteron-driven nuclear reactions using short pulse lasers,” Plasma Phys. Control. Fusion 55, 105009 (2013).10.1088/0741-3335/55/10/105009
    [4]
    S. Bulanov, E. Esarey, C. Schroeder, W. Leemans, S. Bulanov, D. Margarone, G. Korn, and T. Haberer, “Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy,” Phys. Rev. Spec. Top.-Accel. Beams 18, 061302 (2015).10.1103/physrevstab.18.061302
    [5]
    R. Snavely, B. Zhang, K. Akli, Z. Chen, R. Freeman, P. Gu, S. Hatchett, D. Hey, J. Hill, M. Key et al., “Laser generated proton beam focusing and high temperature isochoric heating of solid matter,” Phys. Plasmas 14, 092703 (2007).10.1063/1.2774001
    [6]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436–439 (2001).10.1103/physrevlett.86.436
    [7]
    J. Fernández, B. Albright, F. N. Beg, M. E. Foord, B. M. Hegelich, J. Honrubia, M. Roth, R. B. Stephens, and L. Yin, “Fast ignition with laser-driven proton and ion beams,” Nucl. Fusion 54, 054006 (2014).10.1088/0029-5515/54/5/054006
    [8]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel et al., “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802
    [9]
    X. Jiang, F. Shao, D. Zou, M. Yu, L. Hu, X. Guo, T. Huang, H. Zhang, S. Wu, G. Zhang et al., “Energetic deuterium-ion beams and neutron source driven by multiple-laser interaction with pitcher–catcher target,” Nucl. Fusion 60, 076019 (2020).10.1088/1741-4326/ab91f9
    [10]
    W. Bang, B. Albright, P. Bradley, D. Gautier, S. Palaniyappan, E. Vold, M. A. S. Cordoba, C. Hamilton, and J. Fernández, “Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams,” Sci. Rep. 5, 14318 (2015).10.1038/srep14318
    [11]
    S. Atzeni, M. Temporal, and J. J. Honrubia, “A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons,” Nucl. Fusion 42, L1 (2002).10.1088/0029-5515/42/3/101
    [12]
    M. Temporal, J. J. Honrubia, and S. Atzeni, “Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams,” Phys. Plasmas 9, 3098–3107 (2002).10.1063/1.1482375
    [13]
    J. J. Honrubia, J. Fernández, B. M. Hegelich, M. Murakami, and C. D. Enriquez, “Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array,” Laser Part. Beams 32, 419–427 (2014).10.1017/s0263034614000305
    [14]
    W. Cayzac, V. Bagnoud, M. Basko, A. Blažević, A. Frank, D. Gericke, L. Hallo, G. Malka, A. Ortner, A. Tauschwitz et al., “Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities,” Phys. Rev. E 92, 053109 (2015).10.1103/physreve.92.053109
    [15]
    D. Gericke and M. Schlanges, “Energy deposition of heavy ions in the regime of strong beam-plasma correlations,” Phys. Rev. E 67, 037401 (2003).10.1103/physreve.67.037401
    [16]
    L. S. Brown, D. L. Preston, and R. Singletonjr, “Charged particle motion in a highly ionized plasma,” Phys. Rep. 410, 237–333 (2005).10.1016/j.physrep.2005.01.001
    [17]
    W. Cayzac, A. Frank, A. Ortner, V. Bagnoud, M. Basko, S. Bedacht, C. Bläser, A. Blažević, S. Busold, O. Deppert et al., “Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter,” Nat. Commun. 8, 15693 (2017).10.1038/ncomms15693
    [18]
    C. K. Li and R. D. Petrasso, “Charged-particle stopping powers in inertial confinement fusion plasmas,” Phys. Rev. Lett. 70, 3059 (1993).10.1103/physrevlett.70.3059
    [19]
    J. J. Honrubia and J. Meyer-ter Vehn, “Three-dimensional fast electron transport for ignition-scale inertial fusion capsules,” Nucl. Fus. 46, L25 (2006).10.1088/0029-5515/46/11/l02
    [20]
    J. J. Honrubia and J. Meyer-ter Vehn, “Fast ignition of fusion targets by laser-driven electrons,” Plasma Phys. Controlled Fusion 51, 014008 (2008).10.1088/0741-3335/51/1/014008
    [21]
    H. B. Cai, Y. Xu, P. Yao, E. Zhang, H. Huang, S. Zhu, and X. He, “Hybrid fluid-pic modeling and its application in laser fusion,” Chin. J. Comput. Phys. 40, 159–168 (2023).10.19596/j.cnki.1001-246x.8602
    [22]
    Z. Z Zhang, W. Qi, B. Cui, B. Zhang, W. Hong, and W. M. Zhou, “Hybrid particle-in-cell/fluid method for intense ion beam transport in solid plasmas,” Chin. J. Comput. Phys 40, 210–221 (2023).10.19596/j.cnki.1001-246x.8609
    [23]
    J. Kim, B. Qiao, C. McGuffey, M. Wei, P. Grabowski, and F. Beg, “Self-consistent simulation of transport and energy deposition of intense laser-accelerated proton beams in solid-density matter,” Phys. Rev. Lett. 115, 054801 (2015).10.1103/physrevlett.115.054801
    [24]
    J. Kim, C. McGuffey, B. Qiao, M. Wei, P. Grabowski, and F. Beg, “Varying stopping and self-focusing of intense proton beams as they heat solid density matter,” Phys. Plasmas 23, 043104 (2016).10.1063/1.4945617
    [25]
    J. Ren, Z. Deng, W. Qi, B. Chen, B. Ma, X. Wang, S. Yin, J. Feng, W. Liu, Z. Xu et al., “Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter,” Nat. Commun. 11, 5157 (2020).10.1038/s41467-020-18986-5
    [26]
    [27]
    T. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink et al., “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92, 204801 (2004).10.1103/physrevlett.92.204801
    [28]
    J. Honrubia, A. Morace, and M. Murakami, “On intense proton beam generation and transport in hollow cones,” Matter Radiat. Extremes 2, 28–36 (2017).10.1016/j.mre.2016.11.001
    [29]
    J. Honrubia and M. Murakami, “Ion beam requirements for fast ignition of inertial fusion targets,” Phys. Plasmas 22, 012703 (2015).10.1063/1.4905904
    [30]
    M. D. Barriga-Carrasco and D. Casas, “Electronic stopping of protons in xenon plasmas due to free and bound electrons,” Laser Part. Beams 31, 105–111 (2013).10.1017/s0263034612000900
    [31]
    H. Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie,” Ann. Phys. 397, 325–400 (1930).10.1002/andp.19303970303
    [32]
    G. Maynard and C. Deutsch, “Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid,” J. Phys. 46, 1113–1122 (1985).10.1051/jphys:019850046070111300
    [33]
    D. Casas, A. A. Andreev, M. Schnürer, M. D. Barriga-Carrasco, R. Morales, and L. González-Gallego, “Stopping power of a heterogeneous warm dense matter,” Laser Part. Beams 34, 306–314 (2016).10.1017/s0263034616000161
    [34]
    X. Garbet, C. Deutsch, and G. Maynard, “Mean excitation energies for ions in gases and plasmas,” J. Appl. Phys. 61, 907–916 (1987).10.1063/1.338141
    [35]
    G. Faussurier, C. Blancard, P. Cossé, and P. Renaudin, “Equation of state, transport coefficients, and stopping power of dense plasmas from the average-atom model self-consistent approach for astrophysical and laboratory plasmas,” Phys. Plasmas 17, 052707 (2010).10.1063/1.3420276
    [36]
    M. Gauthier, C. Blancard, S. Chen, B. Siberchicot, M. Torrent, G. Faussurier, and J. Fuchs, “Stopping power modeling in warm and hot dense matter,” High Energy Density Phys. 9, 488–495 (2013).10.1016/j.hedp.2013.03.006
    [37]
    J. Honrubia, C. Alfonsin, L. Alonso, B. Perez, and J. Cerrada, “Simulations of heating of solid targets by fast electrons,” Laser Part. Beams 24, 217–222 (2006).10.1017/s0263034606060319
    [38]
    A. R. Bell, J. R. Davies, S. Guerin, and H. Ruhl, “Fast-electron transport in high-intensity short-pulse laser-solid experiments,” Plasma Phys. Controlled Fusion 39, 653 (1997).10.1088/0741-3335/39/5/001
    [39]
    K. Eidmann, J. Meyer-Ter-Vehn, T. Schlegel, and S. Hüller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202–1214 (2000).10.1103/physreve.62.1202
    [40]
    B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metals irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).10.1103/physrevb.75.195124
    [41]
    J. Badziak, G. Mishra, N. Gupta, and A. Holkundkar, “Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications,” Phys. Plasmas 18, 053108 (2011).10.1063/1.3590856
    [42]
    A. Ortner, A. Frank, A. Blažević, and M. Roth, “Role of charge transfer in heavy-ion-beam–plasma interactions at intermediate energies,” Phys. Rev. E 91, 023104 (2015).10.1103/physreve.91.023104
    [43]
    O. N. Rosmej, A. Blazevic, S. Korostiy, R. Bock, D. H. H. Hoffmann, S. A. Pikuz, V. P. Efremov, V. E. Fortov, A. Fertman, T. Mutin, T. A. Pikuz, and A. Y. Faenov, “Charge state and stopping dynamics of fast heavy ions in dense matter,” Phys. Rev. A 72, 052901 (2005).10.1103/physreva.72.052901
    [44]
    A. Frank, A. Blažević, V. Bagnoud, M. M. Basko, M. Börner, W. Cayzac, D. Kraus, T. Heßling, D. H. H. Hoffmann, A. Ortner, A. Otten, A. Pelka, D. Pepler, D. Schumacher, A. Tauschwitz, and M. Roth, “Energy loss and charge transfer of argon in a laser-generated carbon plasma,” Phys. Rev. Lett. 110, 115001 (2013).10.1103/physrevlett.110.115001
    [45]
    Y. T. Zhao, Y. N. Zhang, R. Cheng, B. He, C. L. Liu, X. M. Zhou, Y. Lei, Y. Y. Wang, J. R. Ren, X. Wang, Y. H. Chen, G. Q. Xiao, S. M. Savin, R. Gavrilin, A. A. Golubev, and D. H. H. Hoffmann, “Benchmark experiment to prove the role of projectile excited states upon the ion stopping in plasmas,” Phys. Rev. Lett. 126, 115001 (2021).10.1103/physrevlett.126.115001
    [46]
    J. Ren, B. Ma, L. Liu, W. Wei, B. Chen, S. Zhang, H. Xu, Z. Hu, F. Li, X. Wang, S. Yin, J. Feng, X. Zhou, Y. Gao, Y. Li, X. Shi, J. Li, X. Ren, Z. Xu, Z. Deng, W. Qi, S. Wang, Q. Fan, B. Cui, W. Wang, Z. Yuan, J. Teng, Y. Wu, Z. Cao, Z. Zhao, Y. Gu, L. Cao, S. Zhu, R. Cheng, Y. Lei, Z. Wang, Z. Zhou, G. Xiao, H. Zhao, D. H. H. Hoffmann, W. Zhou, and Y. Zhao, “Target density effects on charge transfer of laser-accelerated carbon ions in dense plasma,” Phys. Rev. Lett. 130, 095101 (2023).10.1103/physrevlett.130.095101
    [47]
    S. P. Lyon, “SESAME: The Los Alamos National Laboratory Equation of State Database,” Los Alamos National Laboratory Report LA-UR-92-3407 (1992).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (47) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return