Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Chen Tao, Liu Qianrui, Liu Yu, Sun Liang, Chen Mohan. Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter[J]. Matter and Radiation at Extremes, 2024, 9(1): 015604. doi: 10.1063/5.0163303
Citation: Chen Tao, Liu Qianrui, Liu Yu, Sun Liang, Chen Mohan. Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter[J]. Matter and Radiation at Extremes, 2024, 9(1): 015604. doi: 10.1063/5.0163303

Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter

doi: 10.1063/5.0163303
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: mohanchen@pku.edu.cn
  • Received Date: 2023-06-16
  • Accepted Date: 2023-12-13
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • In traditional finite-temperature Kohn–Sham density functional theory (KSDFT), the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures. However, stochastic density functional theory (SDFT) can overcome this limitation. Recently, SDFT and the related mixed stochastic–deterministic density functional theory, based on a plane-wave basis set, have been implemented in the first-principles electronic structure software ABACUS [Q. Liu and M. Chen, Phys. Rev. B 106 , 125132 (2022)]. In this study, we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV. Importantly, we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories. Subsequently, we compute and analyze the structural properties, dynamic properties, and transport coefficients of warm dense matter.
  • loading
  • [1]
    T. Guillot, “Interiors of giant planets inside and outside the solar system,” Science 286, 72–77 (1999).10.1126/science.286.5437.72
    [2]
    E. Campbell, V. Goncharov, T. Sangster, S. Regan, P. Radha, R. Betti, J. Myatt, D. Froula, M. Rosenberg, I. Igumenshchev, W. Seka, A. Solodov, A. Maximov, J. Marozas, T. Collins, D. Turnbull, F. Marshall, A. Shvydky, J. Knauer, R. McCrory, A. Sefkow, M. Hohenberger, P. Michel, T. Chapman, L. Masse, C. Goyon, S. Ross, J. Bates, M. Karasik, J. Oh, J. Weaver, A. Schmitt, K. Obenschain, S. Obenschain, S. Reyes, and B. Van Wonterghem, “Laser-direct-drive program: Promise, challenge, and path forward,” Matter Radiat. Extremes 2, 37–54 (2017).10.1016/j.mre.2017.03.001
    [3]
    E. I. Moses, “Ignition on the National Ignition Facility: A path towards inertial fusion energy,” Nucl. Fusion 49, 104022 (2009).10.1088/0029-5515/49/10/104022
    [4]
    F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Frontiers and Challenges in Warm Dense Matter (Springer Cham, 2014).
    [5]
    B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys. 78, 755–807 (2006).10.1103/revmodphys.78.755
    [6]
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).10.1103/physrev.136.b864
    [7]
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).10.1103/physrev.140.a1133
    [8]
    B. Militzer and D. M. Ceperley, “Path integral Monte Carlo calculation of the deuterium hugoniot,” Phys. Rev. Lett. 85, 1890–1893 (2000).10.1103/physrevlett.85.1890
    [9]
    B. Militzer, D. M. Ceperley, J. D. Kress, J. D. Johnson, L. A. Collins, and S. Mazevet, “Calculation of a deuterium double shock Hugoniot from ab initio simulations,” Phys. Rev. Lett. 87, 275502 (2001).10.1103/physrevlett.87.275502
    [10]
    S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “Strong coupling and degeneracy effects in inertial confinement fusion implosions,” Phys. Rev. Lett. 104, 235003 (2010).10.1103/physrevlett.104.235003
    [11]
    K. P. Driver and B. Militzer, “All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and carbon plasmas,” Phys. Rev. Lett. 108, 115502 (2012).10.1103/physrevlett.108.115502
    [12]
    C. Wang, X.-T. He, and P. Zhang, “Ab initio simulations of dense helium plasmas,” Phys. Rev. Lett. 106, 145002 (2011).10.1103/physrevlett.106.145002
    [13]
    T. G. White, S. Richardson, B. J. B. Crowley, L. K. Pattison, J. W. O. Harris, and G. Gregori, “Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum,” Phys. Rev. Lett. 111, 175002 (2013).10.1103/physrevlett.111.175002
    [14]
    D. Kang, K. Luo, K. Runge, and S. B. Trickey, “Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces,” Matter Radiat. Extremes 5, 064403 (2020).10.1063/5.0025164
    [15]
    Q. Liu, D. Lu, and M. Chen, “Structure and dynamics of warm dense aluminum: A molecular dynamics study with density functional theory and deep potential,” J. Phys.: Condens. Matter 32, 144002 (2020).10.1088/1361-648x/ab5890
    [16]
    S. Zhang, H. Wang, W. Kang, P. Zhang, and X. T. He, “Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas,” Phys. Plasmas 23, 042707 (2016).10.1063/1.4947212
    [17]
    X. Liu, X. Zhang, C. Gao, S. Zhang, C. Wang, D. Li, P. Zhang, W. Kang, W. Zhang, and X. T. He, “Equations of state of poly-α-methylstyrene and polystyrene: First-principles calculations versus precision measurements,” Phys. Rev. B 103, 174111 (2021).10.1103/physrevb.103.174111
    [18]
    A. Blanchet, J. Clérouin, M. Torrent, and F. Soubiran, “Extended first-principles molecular dynamics model for high temperature simulations in the ABINIT code: Application to warm dense aluminum,” Comput. Phys. Commun. 271, 108215 (2022).10.1016/j.cpc.2021.108215
    [19]
    A. Blanchet, F. Soubiran, M. Torrent, and J. Clérouin, “Extended first-principles molecular dynamics simulations of hot dense boron: Equation of state and ionization,” Contrib. Plasma Phys. 62, e202100234 (2022).10.1002/ctpp.202100234
    [20]
    R. Baer, D. Neuhauser, and E. Rabani, “Self-averaging stochastic Kohn-Sham density-functional theory,” Phys. Rev. Lett. 111, 106402 (2013).10.1103/physrevlett.111.106402
    [21]
    Y. Cytter, E. Rabani, D. Neuhauser, and R. Baer, “Stochastic density functional theory at finite temperatures,” Phys. Rev. B 97, 115207 (2018).10.1103/physrevb.97.115207
    [22]
    M. D. Fabian, B. Shpiro, E. Rabani, D. Neuhauser, and R. Baer, “Stochastic density functional theory,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 9, e1412 (2019).10.1002/wcms.1412
    [23]
    R. Baer, D. Neuhauser, and E. Rabani, “Stochastic vector techniques in ground-state electronic structure,” Annu. Rev. Phys. Chem. 73, 255–272 (2022).10.1146/annurev-physchem-090519-045916
    [24]
    V. Sharma, L. A. Collins, and A. J. White, “Stochastic and mixed density functional theory within the projector augmented wave formalism for simulation of warm dense matter,” Phys. Rev. E 108, L023201 (2023).10.1103/physreve.108.l023201
    [25]
    N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441–A1443 (1965).10.1103/physrev.137.a1441
    [26]
    M. P. Surh, T. W. Barbee, and L. H. Yang, “First principles molecular dynamics of dense plasmas,” Phys. Rev. Lett. 86, 5958–5961 (2001).10.1103/physrevlett.86.5958
    [27]
    C. Wang and P. Zhang, “Wide range equation of state for fluid hydrogen from density functional theory,” Phys. Plasmas 20, 092703 (2013).10.1063/1.4821839
    [28]
    T. Sjostrom and J. Daligault, “Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes,” Phys. Rev. Lett. 113, 155006 (2014).10.1103/physrevlett.113.155006
    [29]
    L. Fiedler, Z. A. Moldabekov, X. Shao, K. Jiang, T. Dornheim, M. Pavanello, and A. Cangi, “Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory,” Phys. Rev. Res. 4, 043033 (2022).10.1103/physrevresearch.4.043033
    [30]
    B. Militzer, F. González-Cataldo, S. Zhang, K. P. Driver, and F. m. c. Soubiran, “First-principles equation of state database for warm dense matter computation,” Phys. Rev. E 103, 013203 (2021).10.1103/physreve.103.013203
    [31]
    T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).10.1103/physreve.100.023307
    [32]
    K. Luo, V. V. Karasiev, and S. B. Trickey, “A simple generalized gradient approximation for the noninteracting kinetic energy density functional,” Phys. Rev. B 98, 041111 (2018).10.1103/physrevb.98.041111
    [33]
    A. J. White and L. A. Collins, “Fast and universal Kohn-Sham density functional theory algorithm for warm dense matter to hot dense plasma,” Phys. Rev. Lett. 125, 055002 (2020).10.1103/physrevlett.125.055002
    [34]
    M. Chen, G.-C. Guo, and L. He, “Systematically improvable optimized atomic basis sets for ab initio calculations,” J. Phys.: Condens. Matter 22, 445501 (2010).10.1088/0953-8984/22/44/445501
    [35]
    P. Li, X. Liu, M. Chen, P. Lin, X. Ren, L. Lin, C. Yang, and L. He, “Large-scale ab initio simulations based on systematically improvable atomic basis,” Comput. Mater. Sci. 112, 503–517 (2016).10.1016/j.commatsci.2015.07.004
    [36]
    Q. Liu and M. Chen, “Plane-wave-based stochastic-deterministic density functional theory for extended systems,” Phys. Rev. B 106, 125132 (2022).10.1103/physrevb.106.125132
    [37]
    J. Behler, “Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations,” Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).10.1039/c1cp21668f
    [38]
    T. Morawietz and J. Behler, “A density-functional theory-based neural network potential for water clusters including van der waals corrections,” J. Phys. Chem. A 117, 7356–7366 (2013).10.1021/jp401225b
    [39]
    A. P. Bartók and G. Csányi, “Gaussian approximation potentials: A brief tutorial introduction,” Int. J. Quantum Chem. 115, 1051–1057 (2015).10.1002/qua.24927
    [40]
    H.-Y. Ko, L. Zhang, B. Santra, H. Wang, R. A. DiStasio Jr, and R. Car. Isotope effects in liquid water via deep potential molecular dynamics,” Mol. Phys. 117, 3269–3281 (2019).10.1080/00268976.2019.1652366
    [41]
    G. P. P. Pun, R. Batra, R. Ramprasad, and Y. Mishin, “Physically informed artificial neural networks for atomistic modeling of materials,” Nat. Commun. 10, 2339 (2019).10.1038/s41467-019-10343-5
    [42]
    J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak, O. Isayev, and A. E. Roitberg, “Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning,” Nat. Commun. 10, 2903 (2019).10.1038/s41467-019-10827-4
    [43]
    Q. Zeng, B. Chen, X. Yu, S. Zhang, D. Kang, H. Wang, and J. Dai, “Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning,” Phys. Rev. B 105, 174109 (2022).10.1103/physrevb.105.174109
    [44]
    T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Signatures of a liquid–liquid transition in an ab initio deep neural network model for water,” Proc. Natl. Acad. Sci. U. S. A. 117, 26040–26046 (2020).10.1073/pnas.2015440117
    [45]
    M. Schörner, H. R. Rüter, M. French, and R. Redmer, “Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum to the hydrodynamic limit using neural network potentials,” Phys. Rev. B 105, 174310 (2022).10.1103/physrevb.105.174310
    [46]
    M. Schörner, B. B. L. Witte, A. D. Baczewski, A. Cangi, and R. Redmer, “Ab initio study of shock-compressed copper,” Phys. Rev. B 106, 054304 (2022).10.1103/physrevb.106.054304
    [47]
    L. Fiedler, K. Shah, M. Bussmann, and A. Cangi, “Deep dive into machine learning density functional theory for materials science and chemistry,” Phys. Rev. Mater. 6, 040301 (2022).10.1103/physrevmaterials.6.040301
    [48]
    S. Kumar, H. Tahmasbi, K. Ramakrishna, M. Lokamani, S. Nikolov, J. Tranchida, M. A. Wood, and A. Cangi, “Transferable interatomic potential for aluminum from ambient conditions to warm dense matter,” Phys. Rev. Res. 5, 033162 (2023).10.1103/physrevresearch.5.033162
    [49]
    L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett. 120, 143001 (2018).10.1103/physrevlett.120.143001
    [50]
    H. Wang, L. Zhang, J. Han, and W. E, “DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics,” Comput. Phys. Commun. 228, 178–184 (2018).10.1016/j.cpc.2018.03.016
    [51]
    Y. Zhang, C. Gao, Q. Liu, L. Zhang, H. Wang, and M. Chen, “Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics,” Phys. Plasmas 27, 122704 (2020).10.1063/5.0023265
    [52]
    T. Wen, L. Zhang, H. Wang, W. E, and D. J. Srolovitz, “Deep potentials for materials science,” Mater. Futures 1, 022601 (2022).10.1088/2752-5724/ac681d
    [53]
    D. Lu, H. Wang, M. Chen, L. Lin, R. Car, W. E, W. Jia, and L. Zhang, “86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy,” Comput. Phys. Commun. 259, 107624 (2021).10.1016/j.cpc.2020.107624
    [54]
    W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, and L. Zhang, Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning (IEEE Press, 2020).
    [55]
    Q. Zeng, X. Yu, Y. Yao, T. Gao, B. Chen, S. Zhang, D. Kang, H. Wang, and J. Dai, “Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter,” Phys. Rev. Res. 3, 033116 (2021).10.1103/physrevresearch.3.033116
    [56]
    Q. Liu, J. Li, and M. Chen, “Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study,” Matter Radiat. Extremes 6, 026902 (2021).10.1063/5.0030123
    [57]
    R. Baer and M. Head-Gordon, “Sparsity of the density matrix in Kohn-Sham density functional theory and an assessment of linear system-size scaling methods,” Phys. Rev. Lett. 79, 3962–3965 (1997).10.1103/physrevlett.79.3962
    [58]
    [59]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [60]
    D. Lu, W. Jiang, Y. Chen, L. Zhang, W. Jia, H. Wang, and M. Chen, “DP compress: A model compression scheme for generating efficient deep potential models,” J. Chem. Theory Comput. 18, 5559–5567 (2022).10.1021/acs.jctc.2c00102
    [61]
    D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B 88, 085117 (2013).10.1103/physrevb.88.085117
    [62]
    M. Schlipf and F. Gygi, “Optimization algorithm for the generation of ONCV pseudopotentials,” Comput. Phys. Commun. 196, 36–44 (2015).10.1016/j.cpc.2015.05.011
    [63]
    C. Gao, S. Zhang, W. Kang, C. Wang, P. Zhang, and X. T. He, “Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure,” Phys. Rev. B 94, 205115 (2016).10.1103/physrevb.94.205115
    [64]
    S. Zhang, B. Militzer, M. C. Gregor, K. Caspersen, L. H. Yang, J. Gaffney, T. Ogitsu, D. Swift, A. Lazicki, D. Erskine, R. A. London, P. M. Celliers, J. Nilsen, P. A. Sterne, and H. D. Whitley, “Theoretical and experimental investigation of the equation of state of boron plasmas,” Phys. Rev. E 98, 023205 (2018).10.1103/physreve.98.023205
    [65]
    V. V. Karasiev, J. W. Dufty, and S. B. Trickey, “Nonempirical semilocal free-energy density functional for matter under extreme conditions,” Phys. Rev. Lett. 120, 076401 (2018).10.1103/physrevlett.120.076401
    [66]
    L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly accurate interatomic potentials for materials simulation,” Phys. Rev. Mater. 3, 023804 (2019).10.1103/physrevmaterials.3.023804
    [67]
    J. Zeng, L. Cao, M. Xu, T. Zhu, and J. Z. H. Zhang, “Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation,” Nat. Commun. 11, 5713 (2020).10.1038/s41467-020-19497-z
    [68]
    T. Chen, F. Yuan, J. Liu, H. Geng, L. Zhang, H. Wang, and M. Chen, “Modeling the high-pressure solid and liquid phases of tin from deep potentials with ab initio accuracy,” Phys. Rev. Mater. 7, 053603 (2023).10.1103/physrevmaterials.7.053603
    [69]
    S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).10.1063/1.447334
    [70]
    W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).10.1103/physreva.31.1695
    [71]
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).10.1006/jcph.1995.1039
    [72]
    A. J. Greenfield, J. Wellendorf, and N. Wiser, “X-ray determination of the static structure factor of liquid Na and K,” Phys. Rev. A 4, 1607–1616 (1971).10.1103/physreva.4.1607
    [73]
    E. C. Svensson, V. F. Sears, A. D. B. Woods, and P. Martel, “Neutron-diffraction study of the static structure factor and pair correlations in liquid 4He,” Phys. Rev. B 21, 3638–3651 (1980).10.1103/physrevb.21.3638
    [74]
    H. Kählert, “Dynamic structure factor of strongly coupled Yukawa plasmas with dissipation,” Phys. Plasmas 26, 063703 (2019).10.1063/1.5099579
    [75]
    V. M. Giordano and G. Monaco, “Fingerprints of order and disorder on the high-frequency dynamics of liquids,” Proc. Natl. Acad. Sci. U. S. A. 107, 21985–21989 (2010).10.1073/pnas.1006319107
    [76]
    P. Mabey, S. Richardson, T. G. White, L. B. Fletcher, S. H. Glenzer, N. J. Hartley, J. Vorberger, D. O. Gericke, and G. Gregori, “A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics,” Nat. Commun. 8, 14125 (2017).10.1038/ncomms14125
    [77]
    D. Kraus, D. A. Chapman, A. L. Kritcher, R. A. Baggott, B. Bachmann, G. W. Collins, S. H. Glenzer, J. A. Hawreliak, D. H. Kalantar, O. L. Landen, T. Ma, S. Le Pape, J. Nilsen, D. C. Swift, P. Neumayer, R. W. Falcone, D. O. Gericke, and T. Döppner, “X-ray scattering measurements on imploding CH spheres at the National Ignition Facility,” Phys. Rev. E 94, 011202 (2016).10.1103/physreve.94.011202
    [78]
    T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer, and D. O. Gericke, “Observing the onset of pressure-driven K-shell delocalization,” Nature 618, 270–275 (2023).10.1038/s41586-023-05996-8
    [79]
    M. S. Green, “Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids,” J. Chem. Phys. 22, 398–413 (1954).10.1063/1.1740082
    [80]
    R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).10.1143/jpsj.12.570
    [81]
    M. Chen, J. R. Vella, A. Z. Panagiotopoulos, P. G. Debenedetti, F. H. Stillinger, and E. A. Carter, “Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method,” AIChE J. 61, 2841–2853 (215).10.1002/aic.14795
    [82]
    J. R. Vella, M. Chen, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field,” Phys. Rev. B 95, 064202 (2017).10.1103/physrevb.95.064202
    [83]
    C. Malosso, L. Zhang, R. Car, S. Baroni, and D. Tisi, “Viscosity in water from first-principles and deep-neural-network simulations,” npj Comput. Mater. 8, 139 (2022).10.1038/s41524-022-00830-7
    [84]
    Y. Cheng, H. Liu, Y. Hou, X. Meng, Q. Li, Y. Liu, X. Gao, J. Yuan, H. Song, and J. Wang, “Random-walk shielding-potential viscosity model for warm dense metals,” Phys. Rev. E 106, 014142 (2022).10.1103/physreve.106.014142
    [85]
    [86]
    E. P. M. I. Boulos and P. L. Fauchais, Handbook of Thermal Plasmas (Springer, Cham, 2023).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (82) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return