Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Aniculaesei Constantin, Ha Thanh, Yoffe Samuel, Labun Lance, Milton Stephen, McCary Edward, Spinks Michael M., Quevedo Hernan J., Labun Ou Z., Sain Ritwik, Hannasch Andrea, Zgadzaj Rafal, Pagano Isabella, Franco-Altamirano Jose A., Ringuette Martin L., Gaul Erhart, Luedtke Scott V., Tiwari Ganesh, Ersfeld Bernhard, Brunetti Enrico, Ruhl Hartmut, Ditmire Todd, Bruce Sandra, Donovan Michael E., Downer Michael C., Jaroszynski Dino A., Hegelich Bjorn Manuel. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9(1): 014001. doi: 10.1063/5.0161687
Citation: Aniculaesei Constantin, Ha Thanh, Yoffe Samuel, Labun Lance, Milton Stephen, McCary Edward, Spinks Michael M., Quevedo Hernan J., Labun Ou Z., Sain Ritwik, Hannasch Andrea, Zgadzaj Rafal, Pagano Isabella, Franco-Altamirano Jose A., Ringuette Martin L., Gaul Erhart, Luedtke Scott V., Tiwari Ganesh, Ersfeld Bernhard, Brunetti Enrico, Ruhl Hartmut, Ditmire Todd, Bruce Sandra, Donovan Michael E., Downer Michael C., Jaroszynski Dino A., Hegelich Bjorn Manuel. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9(1): 014001. doi: 10.1063/5.0161687

The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator

doi: 10.1063/5.0161687
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: 10gevlab@gmail.com
  • Received Date: 2023-06-11
  • Accepted Date: 2023-10-22
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • An intense laser pulse focused onto a plasma can excite nonlinear plasma waves. Under appropriate conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. This scheme is called a laser wakefield accelerator. In this work, we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields. We find that a 10-cm-long, nanoparticle-assisted laser wakefield accelerator can generate 340 pC, 10 ± 1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence. It can also produce bunches with lower energies in the 4–6 GeV range.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).10.1103/physrevlett.43.267
    [2]
    M. H. Key, “The Physics of Laser Plasma Interactions, W. L. Kruer. Addison-Wesley, 1988, £33.95, 182 pages.,” J. Plasma Phys. 45(1), 135 (1991).10.1017/s0022377800015555
    [3]
    A. Pukhov and S. Gordienko, “Bubble regime of wake field acceleration: Similarity theory and optimal scalings,” Philos. Trans. R. Soc., A 364(1840), 623–633 (2006).10.1098/rsta.2005.1727
    [4]
    W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, “Nonlinear theory for relativistic plasma wakefields in the blowout regime,” Phys. Rev. Lett. 96(16), 165002 (2006).10.1103/physrevlett.96.165002
    [5]
    F. Amiranoff et al., “Observation of laser wakefield acceleration of electrons,” Phys. Rev. Lett. 81(5), 995–998 (1998).10.1103/physrevlett.81.995
    [6]
    R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Electron acceleration by a laser wakefield in a relativistically self-guided channel,” Phys. Rev. Lett. 78(16), 3125–3128 (1997).10.1103/physrevlett.78.3125
    [7]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).10.1016/0030-4018(85)90120-8
    [8]
    P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125 (1986).10.1364/josab.3.000125
    [9]
    D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).10.1364/ol.16.000042
    [10]
    J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431(7008), 541–544 (2004).10.1038/nature02963
    [11]
    S. P. D. Mangles et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431(7008), 535–538 (2004).10.1038/nature02939
    [12]
    E. Brunetti et al., “Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator,” Phys. Rev. Lett. 105(21), 215007 (2010).10.1103/physrevlett.105.215007
    [13]
    L. T. Ke et al., “Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma,” Phys. Rev. Lett. 126(21), 214801 (2021).10.1103/physrevlett.126.214801
    [14]
    X. Wang et al., “Petawatt-laser-driven wakefield acceleration of electrons to 2 GeV in 1017 cm−3 plasma,” AIP Conf. Proc. 1507, 341–344 (2012).10.1063/1.4773719
    [15]
    A. J. Gonsalves et al., “Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide,” Phys. Rev. Lett. 122(8), 084801 (2019).10.1103/physrevlett.122.084801
    [16]
    H. T. Kim et al., “Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses,” Phys. Rev. Lett. 111(16), 165002 (2013).10.1103/physrevlett.111.165002
    [17]
    A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and trapping of tunnel-ionized electrons into laser-produced wakes,” Phys. Rev. Lett. 104(2), 025003 (2010).10.1103/physrevlett.104.025003
    [18]
    K. Schmid et al., “Density-transition based electron injector for laser driven wakefield accelerators,” Phys. Rev. Spec. Top.--Accel. Beams 13(9), 091301 (2010).10.1103/physrevstab.13.091301
    [19]
    C. Rechatin et al., “Controlling the phase-space volume of injected electrons in a laser-plasma accelerator,” Phys. Rev. Lett. 102(16), 164801 (2009).10.1103/physrevlett.102.164801
    [20]
    B. Shen et al., “Electron injection by a nanowire in the bubble regime,” Phys. Plasmas 14(5), 053115 (2007).10.1063/1.2728773
    [21]
    M. H. Cho, V. B. Pathak, H. T. Kim, and C. H. Nam, “Controlled electron injection facilitated by nanoparticles for laser wakefield acceleration,” Sci. Rep. 8(1), 16924 (2018).10.1038/s41598-018-34998-0
    [22]
    C. Aniculaesei et al., “Proof-of-principle experiment for nanoparticle-assisted laser wakefield electron acceleration,” Phys. Rev. Appl. 12(4), 044041 (2019).10.1103/physrevapplied.12.044041
    [23]
    P. Liu, P. J. Ziemann, D. B. Kittelson, and P. H. McMurry, “Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions,” Aerosol Sci. Technol. 22(3), 314–324 (1995).10.1080/02786829408959749
    [24]
    E. W. Gaul et al., “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier,” Appl. Opt. 49(9), 1676–1681 (2010).10.1364/ao.49.001676
    [25]
    E. Gaul et al., “Improved pulse contrast on the Texas petawatt laser,” J. Phys.: Conf. Ser. 717(1), 012092 (2016).10.1088/1742-6596/717/1/012092
    [26]
    G. Tiwari et al., “Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022 W/cm2,” Opt. Lett. 44(11), 2764 (2019).10.1364/ol.44.002764
    [27]
    B. M. Hegelich and C. Aniculaesei, “Particle-assisted wakefield electron acceleration devices,” U.S. patent application 17/845,223 (2022).
    [28]
    C. Aniculaesei, H. T. Kim, B. J. Yoo, K. H. Oh, and C. H. Nam, “Novel gas target for laser wakefield accelerators,” Rev. Sci. Instrum. 89(2), 025110 (2018).10.1063/1.4993269
    [29]
    M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA Powder Part. J. 34, 80–90 (2017).10.14356/kona.2017009
    [30]
    K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12(Part 2), 230–238 (2011).10.1016/j.phpro.2011.03.128
    [31]
    B. B. Pollock et al., “Two-screen method for determining electron beam energy and deflection from laser wakefield,” in Proceedings of PAC09 (IEEE, 2009), pp. 3035–3037.
    [32]
    C. I. Hojbota, H. T. Kim, J. H. Shin, C. Aniculaesei, B. S. Rao, and C. H. Nam, “Accurate single-shot measurement technique for the spectral distribution of GeV electron beams from a laser wakefield accelerator,” AIP Adv. 9(8), 085229 (2019).10.1063/1.5117311
    [33]
    [34]
    A. Buck et al., “Absolute charge calibration of scintillating screens for relativistic electron detection,” Rev. Sci. Instrum. 81(3), 033301 (2010).10.1063/1.3310275
    [35]
    K. Zeil et al., “Absolute response of Fuji imaging plate detectors to picosecond-electron bunches,” Rev. Sci. Instrum. 81(1), 013307 (2010).10.1063/1.3284524
    [36]
    J. P. Schwinkendorf et al., “Charge calibration of DRZ scintillation phosphor screens,” J. Instrum. 14(09), P09025 (2019).10.1088/1748-0221/14/09/p09025
    [37]
    Y. Glinec et al., “Absolute calibration for a broad range single shot electron spectrometer,” Rev. Sci. Instrum. 77(10), 103301 (2006).10.1063/1.2360988
    [38]
    X. Wang et al., “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).10.1038/ncomms2988
    [39]
    C. Ciocarlan et al., “The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications,” Phys. Plasmas 20(9), 093108 (2013).10.1063/1.4822333
    [40]
    N. Nakanii, K. Huang, K. Kondo, H. Kiriyama, and M. Kando, “Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture,” Appl. Phys. Express 16(2), 026001 (2023).10.35848/1882-0786/acb892
    [41]
    M. F. Gilljohann et al., “Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams,” Phys. Rev. X 9(1), 011046 (2019).10.1103/physrevx.9.011046
    [42]
    Y. Wan et al., “Direct observation of relativistic broken plasma waves,” Nat. Phys. 18(10), 1186–1190 (2022).10.1038/s41567-022-01717-6
    [43]
    C. Aniculaesei et al., “Proof-of-principle experiment for nanoparticle-assisted laser wakefield electron acceleration,” Phys. Rev. Appl. 12(4), 044041 (2019).10.1103/physrevapplied.12.044041
    [44]
    X. Wang et al., “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV,” Nat. Commun. 4, 1988 (2013).10.1038/ncomms2988
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (139) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return