Citation: | Liang Xiaowei, Wei Xudong, Zurek Eva, Bergara Aitor, Li Peifang, Gao Guoying, Tian Yongjun. Design of high-temperature superconductors at moderate pressures by alloying AlH3 or GaH3[J]. Matter and Radiation at Extremes, 2024, 9(1): 018401. doi: 10.1063/5.0159590 |
[1] |
J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020).10.1016/j.physrep.2020.02.003
|
[2] |
D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020).10.1016/j.cossms.2020.100808
|
[3] |
H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, “Hydrogen-rich superconductors at high pressures,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1330 (2018).10.1002/wcms.1330
|
[4] |
K. P. Hilleke and E. Zurek, “Tuning chemical precompression: Theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures,” J. Appl. Phys. 131, 070901 (2022).10.1063/5.0077748
|
[5] |
G. Gao, L. Wang, M. Li, J. Zhang, R. T. Howie, E. Gregoryanz, V. V. Struzhkin, L. Wang, and J. S. Tse, “Superconducting binary hydrides: Theoretical predictions and experimental progresses,” Mater. Today Phys. 21, 100546 (2021).10.1016/j.mtphys.2021.100546
|
[6] |
M. I. Eremets, V. S. Minkov, A. P. Drozdov, P. P. Kong, V. Ksenofontov, S. I. Shylin, S. L. Bud’ko, R. Prozorov, F. F. Balakirev, D. Sun et al., “High-temperature superconductivity in hydrides: Experimental evidence and details,” J Supercond. Nov. Magn. 35, 965 (2022).10.1007/s10948-022-06148-1
|
[7] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).10.1038/nature14964
|
[8] |
M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, “Crystal structure of the superconducting phase of sulfur hydride,” Nat. Phys. 12, 835 (2016).10.1038/nphys3760
|
[9] |
A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. e. Graf, V. B. Prakapenka et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
|
[10] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
|
[11] |
D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Yu. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36 (2020).10.1016/j.mattod.2019.10.005
|
[12] |
I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33, 2006832 (2021).10.1002/adma.202006832
|
[13] |
P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
|
[14] |
E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, “Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures,” Phys. Rev. Lett. 126, 117003 (2021).10.1103/physrevlett.126.117003
|
[15] |
L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang et al., “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
|
[16] |
Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J. Zhao, J. Zhang et al., “Superconductivity above 200 K discovered in superhydrides of calcium,” Nat. Commun. 13, 2863 (2022).10.1038/s41467-022-30454-w
|
[17] |
D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, I. S. Lyubutin et al., “Superconductivity at 253 K in lanthanum–yttrium ternary hydrides,” Mater. Today 48, 18 (2021).10.1016/j.mattod.2021.03.025
|
[18] |
J. Bi, Y. Nakamoto, P. Zhang, Y. Wang, L. Ma, Y. Wang, B. Zou, K. Shimizu, H. Liu, M. Zhou et al., “Stabilization of superconductive La–Y alloy superhydride with Tc above 90 K at megabar pressure,” Mater. Today Phys. 28, 100840 (2022).10.1016/j.mtphys.2022.100840
|
[19] |
J. Bi, Y. Nakamoto, P. Zhang, K. Shimizu, B. Zou, H. Liu, M. Zhou, G. Liu, H. Wang, and Y. Ma, “Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9,” Nat. Commun. 13, 5952 (2022).10.1038/s41467-022-33743-6
|
[20] |
S. Chen, Y. Qian, X. Huang, W. Chen, J. Guo, K. Zhang, J. Zhang, H. Yuan, and T. Cui, “High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride,” Natl. Sci. Rev (published online) (2023).10.1093/nsr/nwad107.
|
[21] |
X. Li, X. Huang, D. Duan, C. J. Pickard, D. Zhou, H. Xie, Q. Zhuang, Y. Huang, Q. Zhou, B. Liu, and T. Cui, “Polyhydride CeH9 with an atomic-like hydrogen clathrate structure,” Nat. Commun. 10, 3461 (2019).10.1038/s41467-019-11330-6
|
[22] |
N. P. Salke, M. M. Davari Esfahani, Y. Zhang, I. A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V. B. Prakapenka, J. Liu, A. R. Oganov, and J.-F. Lin, “Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice,” Nat. Commun. 10, 4453 (2019).10.1038/s41467-019-12326-y
|
[23] |
H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).10.1073/pnas.1118168109
|
[24] |
Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948
|
[25] |
H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
|
[26] |
F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
|
[27] |
X. Liang, A. Bergara, L. Wang, B. Wen, Z. Zhao, X.-F. Zhou, J. He, G. Gao, and Y. Tian, “Potential high-Tc superconductivity in CaYH12 under pressure,” Phys. Rev. B 99, 100505 (2019).10.1103/physrevb.99.100505
|
[28] |
T. Ishikawa, T. Miyake, and K. Shimizu, “Materials informatics based on evolutionary algorithms: Application to search for superconducting hydrogen compounds,” Phys. Rev. B 100, 174506 (2019).10.1103/physrevb.100.174506
|
[29] |
X. Liang, A. Bergara, X. Wei, X. Song, L. Wang, R. Sun, H. Liu, R. J. Hemley, L. Wang, G. Gao, and Y. Tian, “Prediction of high-Tc superconductivity in ternary lanthanum borohydrides,” Phys. Rev. B 104, 134501 (2021).10.1103/physrevb.104.134501
|
[30] |
Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, HM. SongDu, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, “Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure,” Phys. Rev. Lett. 128, 047001 (2022).10.1103/physrevlett.128.047001
|
[31] |
S. Di Cataldo, C. Heil, W. von der Linden, and L. Boeri, “LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides,” Phys. Rev. B 104, L020511 (2021).10.1103/physrevb.104.l020511
|
[32] |
R. Lucrezi, S. Di Cataldo, W. von der Linden, L. Boeri, and C. Heil, “In-silico synthesis of lowest-pressure high-Tc ternary superhydrides,” npj Comput. Mater. 8, 119 (2022).10.1038/s41524-022-00801-y
|
[33] |
Y. Sun, S. Sun, X. Zhong, and H. Liu, “Prediction for high superconducting ternary hydrides below megabar pressure,” J. Phys.: Condens. Matter 34, 505404 (2022).10.1088/1361-648x/ac9bba
|
[34] |
M. Gao, X.-W. Yan, Z.-Y. Lu, and T. Xiang, “Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa,” Phys. Rev. B 104, L100504 (2021).10.1103/physrevb.104.l100504
|
[35] |
M.-J. Jiang, Y.-L. Hai, H.-L. Tian, H.-B. Ding, Y.-J. Feng, C.-L. Yang, X.-J. Chen, and G.-H. Zhong, “High-temperature superconductivity below 100 GPa in ternary C-based hydride MC2H8 with molecular crystal characteristics (M=Na, K, Mg, Al, and Ga),” Phys. Rev. B 105, 104511 (2022).10.1103/physrevb.105.104511
|
[36] |
C. J. Pickard and R. J. Needs, “Metallization of aluminum hydride at high pressures: A first-principles study,” Phys. Rev. B 76, 144114 (2007).10.1103/physrevb.76.144114
|
[37] |
I. Goncharenko, M. I. Eremets, M. Hanfland, J. S. Tse, M. Amboage, Y. Yao, and I. A. Trojan, “Pressure-induced hydrogen-dominant metallic state in aluminum hydride,” Phys. Rev. Lett. 100, 045504 (2008).10.1103/physrevlett.100.045504
|
[38] |
G. Gao, H. Wang, A. Bergara, Y. Li, G. Liu, and Y. Ma, “Metallic and superconducting gallane under high pressure,” Phys. Rev. B 84, 064118 (2011).10.1103/physrevb.84.064118
|
[39] |
H. Xie, W. Zhang, D. Duan, X. Huang, Y. Huang, H. Song, X. Feng, Y. Yao, C. J. Pickard, and T. Cui, “Superconducting zirconium polyhydrides at moderate pressures,” J. Phys. Chem. Lett. 11, 646 (2020).10.1021/acs.jpclett.9b03632
|
[40] |
H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
|
[41] |
B. Rousseau and A. Bergara, “Giant anharmonicity suppresses superconductivity in AlH3 under pressure,” Phys. Rev. B 82, 104504 (2010).10.1103/physrevb.82.104504
|
[42] |
X. Ye, R. Hoffmann, and N. W. Ashcroft, “Theoretical study of phase separation of scandium hydrides under high pressure,” J. Phys. Chem. C 119, 5614 (2015).10.1021/jp512538e
|
[43] |
D. Y. Kim, R. H. Scheicher, H.-k. Mao, T. W. Kang, and R. Ahuja, “General trend for pressurized superconducting hydrogen-dense materials,” Proc. Natl. Acad. Sci. U. S. A. 107, 2793 (2010).10.1073/pnas.0914462107
|
[44] |
D. Y. Kim, R. H. Scheicher, and R. Ahuja, “Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa,” Phys. Rev. Lett. 103, 077002 (2009).10.1103/physrevlett.103.077002
|
[45] |
J. Zhang, J. M. McMahon, A. R. Oganov, X. Li, X. Dong, H. Dong, and S. Wang, “High-temperature superconductivity in the Ti-H system at high pressures,” Phys. Rev. B 101, 134108 (2020).10.1103/physrevb.101.134108
|
[46] |
G. R. Stewart, “Superconductivity in the A15 structure,” Physica C 514, 28 (2015).10.1016/j.physc.2015.02.013
|
[47] |
X. X. WeiHao, A. Bergara, E. Zurek, X. Liang, L. Wang, X. Song, P. Li, L. Wang, G. Gao, and Y. Tian, “Designing ternary superconducting hydrides with A15-type structure at moderate pressures,” Mater. Today Phys. 34, 101086 (2023).10.1016/j.mtphys.2023.101086
|
[48] |
W. Zhao, H. Song, M. Du, Q. Jiang, T. Ma, M. Xu, D. Duan, and T. Cui, “Pressure-induced high-temperature superconductivity in ternary Y–Zr–H compounds,” Phys. Chem. Chem. Phys. 25, 5237 (2023).10.1039/d2cp05850b
|
[49] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
|
[50] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
|
[51] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
|
[52] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
|
[53] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
|
[54] |
A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
|
[55] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
|
[56] |
R. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1994).
|
[57] |
P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905 (1975).10.1103/physrevb.12.905
|
![]() |
![]() |