Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Liang Xiaowei, Wei Xudong, Zurek Eva, Bergara Aitor, Li Peifang, Gao Guoying, Tian Yongjun. Design of high-temperature superconductors at moderate pressures by alloying AlH3 or GaH3[J]. Matter and Radiation at Extremes, 2024, 9(1): 018401. doi: 10.1063/5.0159590
Citation: Liang Xiaowei, Wei Xudong, Zurek Eva, Bergara Aitor, Li Peifang, Gao Guoying, Tian Yongjun. Design of high-temperature superconductors at moderate pressures by alloying AlH3 or GaH3[J]. Matter and Radiation at Extremes, 2024, 9(1): 018401. doi: 10.1063/5.0159590

Design of high-temperature superconductors at moderate pressures by alloying AlH3 or GaH3

doi: 10.1063/5.0159590
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: gaoguoying@ysu.edu.cn
  • Received Date: 2023-05-25
  • Accepted Date: 2023-10-26
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • Since the discovery of hydride superconductors, a significant challenge has been to reduce the pressure required for their stabilization. In this context, we propose that alloying could be an effective strategy to achieve this. We focus on a series of alloyed hydrides with the AMH6 composition, which can be made via alloying A15 AH3 (A = Al or Ga) with M (M = a group ⅢB or IVB metal), and study their behavior under pressure. Seven of them are predicted to maintain the A15-type structure, similar to AH3 under pressure, providing a platform for studying the effects of alloying on the stability and superconductivity of AH3. Among these, the A15-type phases of AlZrH6 and AlHfH6 are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa, respectively. Furthermore, they remain dynamically stable at even lower pressures, as low as 13 GPa for AlZrH6 and 6 GPa for AlHfH6. These pressures are significantly lower than that required for stabilizing A15 AlH3. Additionally, the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3. This enhancement leads to higher critical temperatures (Tc) of 75 and 76 K for AlZrH6 and AlHfH6 at 20 and 10 GPa, respectively. In the case of GaMH6 alloys, where M represents Sc, Ti, Zr, or Hf, these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH3 from 160 GPa to 116, 95, 80, and 85 GPa, respectively. Particularly noteworthy are the A15-type GaMH6 alloys, which remain dynamically stable at low pressures of 97, 28, 5, and 6 GPa, simultaneously exhibiting high Tc of 88, 39, 70, and 49 K at 100, 35, 10, and 10 GPa, respectively. Overall, these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.
  • loading
  • [1]
    J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, “A perspective on conventional high-temperature superconductors at high pressure: Methods and materials,” Phys. Rep. 856, 1 (2020).10.1016/j.physrep.2020.02.003
    [2]
    D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, “On distribution of superconductivity in metal hydrides,” Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020).10.1016/j.cossms.2020.100808
    [3]
    H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, “Hydrogen-rich superconductors at high pressures,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1330 (2018).10.1002/wcms.1330
    [4]
    K. P. Hilleke and E. Zurek, “Tuning chemical precompression: Theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures,” J. Appl. Phys. 131, 070901 (2022).10.1063/5.0077748
    [5]
    G. Gao, L. Wang, M. Li, J. Zhang, R. T. Howie, E. Gregoryanz, V. V. Struzhkin, L. Wang, and J. S. Tse, “Superconducting binary hydrides: Theoretical predictions and experimental progresses,” Mater. Today Phys. 21, 100546 (2021).10.1016/j.mtphys.2021.100546
    [6]
    M. I. Eremets, V. S. Minkov, A. P. Drozdov, P. P. Kong, V. Ksenofontov, S. I. Shylin, S. L. Bud’ko, R. Prozorov, F. F. Balakirev, D. Sun et al., “High-temperature superconductivity in hydrides: Experimental evidence and details,” J Supercond. Nov. Magn. 35, 965 (2022).10.1007/s10948-022-06148-1
    [7]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).10.1038/nature14964
    [8]
    M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, “Crystal structure of the superconducting phase of sulfur hydride,” Nat. Phys. 12, 835 (2016).10.1038/nphys3760
    [9]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. e. Graf, V. B. Prakapenka et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528 (2019).10.1038/s41586-019-1201-8
    [10]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001
    [11]
    D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Yu. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36 (2020).10.1016/j.mattod.2019.10.005
    [12]
    I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk et al., “Anomalous high-temperature superconductivity in YH6,” Adv. Mater. 33, 2006832 (2021).10.1002/adma.202006832
    [13]
    P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton et al., “Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure,” Nat. Commun. 12, 5075 (2021).10.1038/s41467-021-25372-2
    [14]
    E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, “Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures,” Phys. Rev. Lett. 126, 117003 (2021).10.1103/physrevlett.126.117003
    [15]
    L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang et al., “High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa,” Phys. Rev. Lett. 128, 167001 (2022).10.1103/physrevlett.128.167001
    [16]
    Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J. Zhao, J. Zhang et al., “Superconductivity above 200 K discovered in superhydrides of calcium,” Nat. Commun. 13, 2863 (2022).10.1038/s41467-022-30454-w
    [17]
    D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, I. S. Lyubutin et al., “Superconductivity at 253 K in lanthanum–yttrium ternary hydrides,” Mater. Today 48, 18 (2021).10.1016/j.mattod.2021.03.025
    [18]
    J. Bi, Y. Nakamoto, P. Zhang, Y. Wang, L. Ma, Y. Wang, B. Zou, K. Shimizu, H. Liu, M. Zhou et al., “Stabilization of superconductive La–Y alloy superhydride with Tc above 90 K at megabar pressure,” Mater. Today Phys. 28, 100840 (2022).10.1016/j.mtphys.2022.100840
    [19]
    J. Bi, Y. Nakamoto, P. Zhang, K. Shimizu, B. Zou, H. Liu, M. Zhou, G. Liu, H. Wang, and Y. Ma, “Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9,” Nat. Commun. 13, 5952 (2022).10.1038/s41467-022-33743-6
    [20]
    S. Chen, Y. Qian, X. Huang, W. Chen, J. Guo, K. Zhang, J. Zhang, H. Yuan, and T. Cui, “High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride,” Natl. Sci. Rev (published online) (2023).10.1093/nsr/nwad107.
    [21]
    X. Li, X. Huang, D. Duan, C. J. Pickard, D. Zhou, H. Xie, Q. Zhuang, Y. Huang, Q. Zhou, B. Liu, and T. Cui, “Polyhydride CeH9 with an atomic-like hydrogen clathrate structure,” Nat. Commun. 10, 3461 (2019).10.1038/s41467-019-11330-6
    [22]
    N. P. Salke, M. M. Davari Esfahani, Y. Zhang, I. A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V. B. Prakapenka, J. Liu, A. R. Oganov, and J.-F. Lin, “Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice,” Nat. Commun. 10, 4453 (2019).10.1038/s41467-019-12326-y
    [23]
    H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).10.1073/pnas.1118168109
    [24]
    Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 9948 (2015).10.1038/srep09948
    [25]
    H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
    [26]
    F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
    [27]
    X. Liang, A. Bergara, L. Wang, B. Wen, Z. Zhao, X.-F. Zhou, J. He, G. Gao, and Y. Tian, “Potential high-Tc superconductivity in CaYH12 under pressure,” Phys. Rev. B 99, 100505 (2019).10.1103/physrevb.99.100505
    [28]
    T. Ishikawa, T. Miyake, and K. Shimizu, “Materials informatics based on evolutionary algorithms: Application to search for superconducting hydrogen compounds,” Phys. Rev. B 100, 174506 (2019).10.1103/physrevb.100.174506
    [29]
    X. Liang, A. Bergara, X. Wei, X. Song, L. Wang, R. Sun, H. Liu, R. J. Hemley, L. Wang, G. Gao, and Y. Tian, “Prediction of high-Tc superconductivity in ternary lanthanum borohydrides,” Phys. Rev. B 104, 134501 (2021).10.1103/physrevb.104.134501
    [30]
    Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, HM. SongDu, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, “Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure,” Phys. Rev. Lett. 128, 047001 (2022).10.1103/physrevlett.128.047001
    [31]
    S. Di Cataldo, C. Heil, W. von der Linden, and L. Boeri, “LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides,” Phys. Rev. B 104, L020511 (2021).10.1103/physrevb.104.l020511
    [32]
    R. Lucrezi, S. Di Cataldo, W. von der Linden, L. Boeri, and C. Heil, “In-silico synthesis of lowest-pressure high-Tc ternary superhydrides,” npj Comput. Mater. 8, 119 (2022).10.1038/s41524-022-00801-y
    [33]
    Y. Sun, S. Sun, X. Zhong, and H. Liu, “Prediction for high superconducting ternary hydrides below megabar pressure,” J. Phys.: Condens. Matter 34, 505404 (2022).10.1088/1361-648x/ac9bba
    [34]
    M. Gao, X.-W. Yan, Z.-Y. Lu, and T. Xiang, “Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa,” Phys. Rev. B 104, L100504 (2021).10.1103/physrevb.104.l100504
    [35]
    M.-J. Jiang, Y.-L. Hai, H.-L. Tian, H.-B. Ding, Y.-J. Feng, C.-L. Yang, X.-J. Chen, and G.-H. Zhong, “High-temperature superconductivity below 100 GPa in ternary C-based hydride MC2H8 with molecular crystal characteristics (M=Na, K, Mg, Al, and Ga),” Phys. Rev. B 105, 104511 (2022).10.1103/physrevb.105.104511
    [36]
    C. J. Pickard and R. J. Needs, “Metallization of aluminum hydride at high pressures: A first-principles study,” Phys. Rev. B 76, 144114 (2007).10.1103/physrevb.76.144114
    [37]
    I. Goncharenko, M. I. Eremets, M. Hanfland, J. S. Tse, M. Amboage, Y. Yao, and I. A. Trojan, “Pressure-induced hydrogen-dominant metallic state in aluminum hydride,” Phys. Rev. Lett. 100, 045504 (2008).10.1103/physrevlett.100.045504
    [38]
    G. Gao, H. Wang, A. Bergara, Y. Li, G. Liu, and Y. Ma, “Metallic and superconducting gallane under high pressure,” Phys. Rev. B 84, 064118 (2011).10.1103/physrevb.84.064118
    [39]
    H. Xie, W. Zhang, D. Duan, X. Huang, Y. Huang, H. Song, X. Feng, Y. Yao, C. J. Pickard, and T. Cui, “Superconducting zirconium polyhydrides at moderate pressures,” J. Phys. Chem. Lett. 11, 646 (2020).10.1021/acs.jpclett.9b03632
    [40]
    H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
    [41]
    B. Rousseau and A. Bergara, “Giant anharmonicity suppresses superconductivity in AlH3 under pressure,” Phys. Rev. B 82, 104504 (2010).10.1103/physrevb.82.104504
    [42]
    X. Ye, R. Hoffmann, and N. W. Ashcroft, “Theoretical study of phase separation of scandium hydrides under high pressure,” J. Phys. Chem. C 119, 5614 (2015).10.1021/jp512538e
    [43]
    D. Y. Kim, R. H. Scheicher, H.-k. Mao, T. W. Kang, and R. Ahuja, “General trend for pressurized superconducting hydrogen-dense materials,” Proc. Natl. Acad. Sci. U. S. A. 107, 2793 (2010).10.1073/pnas.0914462107
    [44]
    D. Y. Kim, R. H. Scheicher, and R. Ahuja, “Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa,” Phys. Rev. Lett. 103, 077002 (2009).10.1103/physrevlett.103.077002
    [45]
    J. Zhang, J. M. McMahon, A. R. Oganov, X. Li, X. Dong, H. Dong, and S. Wang, “High-temperature superconductivity in the Ti-H system at high pressures,” Phys. Rev. B 101, 134108 (2020).10.1103/physrevb.101.134108
    [46]
    G. R. Stewart, “Superconductivity in the A15 structure,” Physica C 514, 28 (2015).10.1016/j.physc.2015.02.013
    [47]
    X. X. WeiHao, A. Bergara, E. Zurek, X. Liang, L. Wang, X. Song, P. Li, L. Wang, G. Gao, and Y. Tian, “Designing ternary superconducting hydrides with A15-type structure at moderate pressures,” Mater. Today Phys. 34, 101086 (2023).10.1016/j.mtphys.2023.101086
    [48]
    W. Zhao, H. Song, M. Du, Q. Jiang, T. Ma, M. Xu, D. Duan, and T. Cui, “Pressure-induced high-temperature superconductivity in ternary Y–Zr–H compounds,” Phys. Chem. Chem. Phys. 25, 5237 (2023).10.1039/d2cp05850b
    [49]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [50]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
    [51]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).10.1103/physrevb.54.11169
    [52]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).10.1103/physrevlett.77.3865
    [53]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).10.1103/physrevb.50.17953
    [54]
    A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
    [55]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
    [56]
    R. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1994).
    [57]
    P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905 (1975).10.1103/physrevb.12.905
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (76) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return