Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Gus’kov S. Yu, Yakhin R. A.. Nonstationary laser-supported ionization wave in layer of porous substance with subcritical density[J]. Matter and Radiation at Extremes, 2024, 9(1): 016601. doi: 10.1063/5.0157904
Citation: Gus’kov S. Yu, Yakhin R. A.. Nonstationary laser-supported ionization wave in layer of porous substance with subcritical density[J]. Matter and Radiation at Extremes, 2024, 9(1): 016601. doi: 10.1063/5.0157904

Nonstationary laser-supported ionization wave in layer of porous substance with subcritical density

doi: 10.1063/5.0157904
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yakhin.rafael@gmail.com
  • Received Date: 2023-05-12
  • Accepted Date: 2023-09-04
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • A time-dependent analytical solution is found for the velocity of a plane ionization wave generated under nanosecond laser pulse action on the surface of a flat layer of low-Z porous substance with density less than the critical density of the produced plasma. With corrections for the two-dimensional nature of the problem when a laser beam of finite radius interacts with a flat target, this solution is in quantitative agreement with measurements of ionization wave velocity in various experiments. The solution compared with experimental data covering wide ranges of performance conditions, namely, (3–8) × 1014 W cm−2 for laser pulse intensity, 0.3–3 ns for pulse duration, 0.35–0.53 μm for laser wavelength, 100–1000 μm for laser beam radius, 380–950 μm for layer thickness, 4.5–12 mg cm−3 for average density of porous substance, and 1–25 μm for average pore size. The parameters of the laser beam that ensure the generation of a plane ionization wave in a layer of subcritical porous matter are determined for the problem statements and are found to meet the requirements of practical applications.
  • loading
  • [1]
    S. Yu. Gus’kov and V. B. Rozanov, “Interaction of laser radiation with a porous medium and formation of a nonequilibrium plasma,” Quantum Electron. 27, 696 (1997).10.1070/qe1997v027n08abeh001021
    [2]
    S. Yu. Gus’kov, “Nonequilibrium laser-produced plasma of volume-structured media and inertial-confined-fusion applications,” J. Russ. Laser Res. 31, 574 (2010).10.1007/s10946-010-9178-7
    [3]
    A. E. Bugrov, S. Yu. Gus’kov, V. B. Rozanov, I. N. Burdonskii, V. V. Gavrilov, A. Y. Gol’tsov, E. V. Zhuzhukalo, N. G. Koval’skii, M. I. Pergament, and V. M. Petryakov, “Interaction of a high-power laser beam with low-density porous media,” J. Exp. Theor. Phys. 84, 497 (1997).10.1134/1.558168
    [4]
    A. Caruso, C. Strangio, S. Yu. Gus’kov, and V. B. Rozanov, “Interaction experiments of laser light with low density supercritical foams at the AEEF ABC facility,” Laser Part. Beams 18, 25 (2000).10.1017/s0263034600181042
    [5]
    M. Desselberger, M. Jones, J. Edwards, M. Dunne, and O. Willi, “Use of X-ray preheated foam layers to reduce beam structure imprint in laser-driven targets,” Phys. Rev. Lett. 74, 2961 (1995).10.1103/physrevlett.74.2961
    [6]
    S. Depierreux, C. Labaune, D. T. Michel, C. Stenz, P. Nicolai, M. Grech, G. Riazuelo, S. Weber, C. Riconda, V. T. Tikhonchuk, P. Loiseau, N. G. Borisenko, W. Nazarov, S. Huller, D. Pesme, M. Casanova, J. Limpouch, C. Meyer, P. Di-Nicola, R. Wrobel, E. Alozy, P. Romary, G. Thiell, G. Soullie, C. Reverdin, and B. Villette, “Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime,” Phys. Rev. Lett. 102, 195005 (2009).10.1103/physrevlett.102.195005
    [7]
    T. Hall, D. Batani, W. Nazarov, M. Koenig, and A. Benuzzi, “Recent advances in laser–plasma experiments using foams,” Laser Part. Beams 20, 303 (2002).10.1017/s0263034602202220
    [8]
    M. Cipriani, S. Yu. Gus’kov, F. Consoli, R. De Angelis, A. A. Rupasov, P. Andreoli, G. Cristofari, G. Di Giorgio, and M. Salvadori, “Time-dependent measurement of high-power laser light reflection by low-Z foam plasma,” High Power Laser Sci. Eng. 9, e40 (2021).10.1017/hpl.2021.27
    [9]
    K. Nagai, C. S. A. Musgrave, and W. Nazarov, “A review of low density porous materials used in laser plasma experiments,” Phys. Plasmas 25, 030501 (2018).10.1063/1.5009689
    [10]
    S. Yu. Gus’kov, N. V. Zmitrenko, and V. B. Rozanov, “The laser greenhouse thermonuclear target with distributed absorption of laser energy,” J. Exp. Theor. Phys. 81, 296 (1995).
    [11]
    M. Dunne, M. Borghesi, A. Iwase, M. W. Jones, R. Taylor, O. Willi, R. Gibson, S. R. Goldman, J. Mack, and R. Watt, Phys. Rev. Lett. 75, 3858 (1995).10.1103/physrevlett.75.3858
    [12]
    S. Y. Gus’kov and Y. A. Merkul’ev, “Low-density absorber—Converter in direct-irradiation laser thermonuclear targets,” Quantum Electron. 31, 311 (2001).10.1070/qe2001v031n04abeh001941
    [13]
    D. Batani, A. Balducci, W. Nazarov, T. Löwer, T. Hall, M. Koenig, B. Faral, A. Benuzzi, and M. Temporal, “Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves,” Phys. Rev. E 63, 046410 (2001).10.1103/physreve.63.046410
    [14]
    A. Benuzzi, M. Koenig, J. Krishnan, B. Faral, W. Nazarov, M. Temporal, D. Batani, L. Müller, F. Torsiello, T. Hall, and N. Grandjouan, “Dynamics of laser produced shocks in foam–solid targets,” Phys. Plasmas 5, 2827 (1998).10.1063/1.873031
    [15]
    M. Temporal, S. Atzeni, D. Batani, and M. Koenig, “Analysis of the impedance mismatch effect in foam-solid targets compressed by laser-driven shock waves,” Eur. Phys. J. D 12, 509 (2000).10.1007/s100530070012
    [16]
    I. A. Belov, S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, A. Yu. Voronin, S. G. Garanin, S. Y. Golovkin, S. Y. Gus’kov, N. N. Demchenko, V. N. Derkach et al., “Shock-wave pressure transfer to a solid target with porous absorber of high-power laser pulse,” J. Exp. Theor. Phys. 134(3), 340 (2022).10.1134/s106377612203013x
    [17]
    S. Gus’kov, J. Limpouch, P. Nicolai, and V. Tikhonchuk, “Laser-supported ionization wave in under-dense gases and foams,” Phys. Plasmas 18, 103114 (2011).10.1063/1.3642615
    [18]
    J. Denavit and D. W. Phillion, “Laser ionization and heating of gas targets for long-scale-length instability experiments,” Phys. Plasmas 1(6), 1971 (1994).10.1063/1.870653
    [19]
    J. Colvin, H. Matsukuma, K. Brown, J. Davis, G. Kemp, K. Koga, N. Tanaka, A. Yogo, Z. Zhang, H. Nishimura, and K. Fournier, “The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma,” Phys. Plasmas 25, 032702 (2018).10.1063/1.5012523
    [20]
    M. Cipriani, S. Yu. Gus’kov, R. De Angelis, F. Consoli, A. Rupasov, P. Andreoli, G. Cristofari, and G. Di Giorgio, “Laser-driven hydrothermal wave speed in low-Z foam of overcritical density,” Phys. Plasmas 25, 092704 (2018).10.1063/1.5041511
    [21]
    P. Nicolai, M. Olazabal-Loumé, S. Fujioka, A. Sunahara, N. Borisenko, S. Gus’kov, A. Orekov, M. Grech, G. Riazuelo, C. Labaune, J. Velechowski, and V. Tikhonchuk, “Experimental evidence of foam homogenization,” Phys. Plasmas 19, 113105 (2012).10.1063/1.4766470
    [22]
    N. G. Borisenko and Y. A. Merkuliev, “Preheating of a target by laser radiation through plasma and polymer aerogel,” J. Russ. Laser Res. 31(3), 256 (2010).10.1007/s10946-010-9145-3
    [23]
    A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, Yu.A. Merkuliev, J. Limpouch, and V. G. Pimenov, “Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density,” Laser Part. Beams 24, 283–290 (2006).10.1017/s0263034606060435
    [24]
    O. S. Jones, G. E. Kemp, S. H. Langer, B. J. Winjum, R. L. Berger, J. S. Oakdale, M. A. Belyaev, J. Biener, M. M. Biener, D. A. Mariscal, J. L. Milovich, M. Stadermann, P. A. Sterne, and S. C. Wilks, “Experimental and calculational investigation of laser-heated additive manufactured foams,” Phys. Plasmas 28, 022709 (2021).10.1063/5.0032023
    [25]
    V. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P. Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch, R. Liska, M. Krůs, F. Wang, D. Yang, S. W. Li, Z. C. Li, Z. Y. Guan, Y. G. Liu, T. Xu, X. S. Peng, X. M. Liu, Y. L. Li, J. Li, T. M. Song, J. M. Yang, S. E. Jiang, B. H. Zhang, W. Y. Huo, G. Ren, Y. H. Chen, W. Zheng, and S. Weber, “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype,” Matter Radiat. Extremes 6, 025902 (2021).10.1063/5.0023006
    [26]
    J. Velechovsky, J. Limpouch, R. Liska, and V. Tikhonchuk, “Hydrodynamic modeling of laser interaction with micro-structured targets,” Plasma Phys. Control. Fusion 58, 095004 (2016).10.1088/0741-3335/58/9/095004
    [27]
    M. Cipriani, S. Gus’kov, R. De Angelis, F. Consoli, A. Rupasov, P. Andreoli, G. Cristofari, G. Di Giorgio, and F. Ingenito, “Laser-supported hydrothermal wave in low-dense porous substance,” Laser Part. Beams 36, 121–128 (2018).10.1017/s0263034618000022
    [28]
    M. Belyaev, R. Berger, O. Jones, S. Langer, and D. Mariscal, “Laser propagation in a subcritical foam: Ion and electron heating,” Phys. Plasmas 25, 123109 (2018).10.1063/1.5050531
    [29]
    V. Tikhonchuk, Y. J. Gu, O. Klimo, J. Limpouch, and S. Weber, “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes,” Matter Radiat. Extremes 4, 045402 (2019).10.1063/1.5090965
    [30]
    M. A. Belyaev, R. L. Berger, O. S. Jones, S. H. Langer, D. A. Mariscal, J. Milovich, and B. Winjum, “Laser propagation in a subcritical foam: Subgrid model,” Phys. Plasmas 27, 112710 (2020).10.1063/5.0022952
    [31]
    L. Hudec, A. Gintrand, J. Limpouch, R. Liska, S. Shekhanov, V. T. Tikhonchuk, and S. Weber, “Hybrid ablation–expansion model for laser interaction with low-density foams,” Phys. Plasmas 30, 042704 (2023).10.1063/5.0139488
    [32]
    S. Yu. Gus’kov, P. A. Kuchugov, and R. A. Yakhin, “Duration and distance of a laser-driven shock wave formation in a plasma with subcritical density,” Phys. Plasmas 28, 092108 (2021).10.1063/5.0060318
    [33]
    V. V. Gavrilov, A. Yu. Gol’tsov, N. G. Koval'skii, S. N. Koptyaev, A. I. Magunov, T. A. Pikuz, I. Yu. Skobelev, and A. Ya. Faenov, “X-ray spectral measurement of high-temperature plasma parameters in porous targets irradiated with high-power laser pulses,” Quantum Electron. 31, 1071 (2001).10.1070/qe2001v031n12abeh002104
    [34]
    V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorskii, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7(5), 15 (1995).
    [35]
    S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Y. Doskoch, N. V. Zmitrenko, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, “Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse,” J. Exp. Theor. Phys. 124, 341 (2017).10.1134/s1063776117010113
    [36]
    S. Y. Gus’kov, M. Cipriani, R. De Angelis, F. Consoli, A. A. Rupasov, P. Andreoli, G. Cristofari, and G. Di Giorgio, “Absorption coefficient for nanosecond laser pulse in porous material,” Plasma Phys. Controlled Fusion 57, 125004 (2015).10.1088/0741-3335/57/12/125004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (32) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return