Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Krása Josef, Burian Tomáš, Hájková Věra, Chalupský Jaromír, Jelínek Šimon, Frantálová Kateřina, Krupka Michal, Kuglerová Zuzana, Singh Sushil Kumar, Vozda Vojtěch, Vyšín Luděk, Šmíd Michal, Perez-Martin Pablo, Kühlman Marion, Pintor Juan, Cikhardt Jakub, Dreimann Matthias, Eckermann Dennis, Rosenthal Felix, Vinko Sam M., Forte Alessandro, Gawne Thomas, Campbell Thomas, Ren Shenyuan, Shi YuanFeng, Hutchinson Trevor, Humphries Oliver, Preston Thomas, Makita Mikako, Nakatsutsumi Motoaki, Pan Xiayun, Köhler Alexander, Harmand Marion, Toleikis Sven, Falk Katerina, Juha Libor. Ion emission from warm dense matter produced by irradiation with a soft x-ray free-electron laser[J]. Matter and Radiation at Extremes, 2024, 9(1): 016602. doi: 10.1063/5.0157781
Citation: Krása Josef, Burian Tomáš, Hájková Věra, Chalupský Jaromír, Jelínek Šimon, Frantálová Kateřina, Krupka Michal, Kuglerová Zuzana, Singh Sushil Kumar, Vozda Vojtěch, Vyšín Luděk, Šmíd Michal, Perez-Martin Pablo, Kühlman Marion, Pintor Juan, Cikhardt Jakub, Dreimann Matthias, Eckermann Dennis, Rosenthal Felix, Vinko Sam M., Forte Alessandro, Gawne Thomas, Campbell Thomas, Ren Shenyuan, Shi YuanFeng, Hutchinson Trevor, Humphries Oliver, Preston Thomas, Makita Mikako, Nakatsutsumi Motoaki, Pan Xiayun, Köhler Alexander, Harmand Marion, Toleikis Sven, Falk Katerina, Juha Libor. Ion emission from warm dense matter produced by irradiation with a soft x-ray free-electron laser[J]. Matter and Radiation at Extremes, 2024, 9(1): 016602. doi: 10.1063/5.0157781

Ion emission from warm dense matter produced by irradiation with a soft x-ray free-electron laser

doi: 10.1063/5.0157781
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: krasa@fzu.cz
  • Received Date: 2023-05-11
  • Accepted Date: 2023-09-04
  • Available Online: 2024-01-01
  • Publish Date: 2024-01-01
  • We report on an experiment performed at the FLASH2 free-electron laser (FEL) aimed at producing warm dense matter via soft x-ray isochoric heating. In the experiment, we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model. We find that most emitted ions are thermal, but that some impurities chemisorbed on the target surface, such as protons, are accelerated by the electrostatic field created in the plasma by escaped electrons. The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures. We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.
  • loading
  • [1]
    B. Nagler et al., “Turning solid aluminium transparent by intense soft x-ray photoionization,” Nat. Phys. 5, 693–696 (2009).10.1038/nphys1341
    [2]
    A. A. Sorokin, S. V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz, and M. Richter, “Photoelectric effect at ultrahigh intensities,” Phys. Rev. Lett. 99, 213002 (2007).10.1103/physrevlett.99.213002
    [3]
    U. Zastrau et al., “XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH,” Laser Part. Beams 30, 45 (2012).10.1017/s026303461100067x
    [4]
    X. Li, R. Boll, D. Rolles, and A. Rudenko, “Simple model for sequential multiphoton ionization by ultraintense x rays,” Phys. Rev. A 104, 033115 (2021).10.1103/PhysRevA.104.033115
    [5]
    H. N. Chapman et al., “Femtosecond diffractive imaging with a soft-x-ray free-electron laser,” Nat. Phys. 2, 839 (2006).10.1038/nphys461
    [6]
    H. N. Chapman et al., “Femtosecond time-delay x-ray holography,” Nature 448, 676 (2007).10.1038/nature06049
    [7]
    C. Bostedt, H. Thomas, M. Hoener et al., “Multistep ionization of argon clusters in intense femtosecond extreme ultraviolet pulses,” Phys, Rev. Lett. 100, 133401 (2008).10.1103/physrevlett.100.133401
    [8]
    K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6, e59 (2018).10.1017/hpl.2018.53
    [9]
    S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A 61, 33–37 (1995).10.1007/bf01538207
    [10]
    S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Phys.-Usp. 45, 293–324 (2002).10.1070/pu2002v045n03abeh000966
    [11]
    N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).10.1021/cr010426b
    [12]
    J. Chalupský et al., “Spot size characterization of focused non-Gaussian x-ray laser beams,” Opt. Express 18, 27836 (2010).10.1364/oe.18.027836
    [13]
    J. Chalupsky et al., “Comparing different approaches to characterization of focused x-ray laser beams,” Nucl. Instrum. Methods Phys. Res., Sect. A 631, 130–133 (2011).10.1016/j.nima.2010.12.040
    [14]
    R. Sobierajski et al., “Experimental station to study the interaction of intense femtosecond vacuum ultraviolet pulses with matter at TTF1 free electron laser,” Rev. Sci. Instrum. 76, 013909 (2005).10.1063/1.1823652
    [15]
    B. Iwan et al., “TOF-OFF: A method for determining focal positions in tightly focused free-electron laser experiments by measurement of ejected ions,” High Energy Density Phys. 7, 336 (2011).10.1016/j.hedp.2011.06.008
    [16]
    J. Andreasson et al., “Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser,” Phys. Rev. E 83, 016403 (2011).10.1103/physreve.83.016403
    [17]
    A. Lorusso, J. Krása, K. Rohlena, V. Nassisi, F. Belloni, and D. Doria, “Charge losses in expanding plasma created by an XeCl laser,” Appl. Phys. Lett. 86, 081501 (2005).10.1063/1.1866215
    [18]
    M. Manfredda, C. Fava, S. Gerusina, R. Gobessi, N. Mahne, L. Raimondi, A. Simoncig, and M. Zangrando, “The evolution of KAOS, a multipurpose active optics system for EUV/soft x-rays,” Synchrotron Radiat. News 35, 29–36 (2022).10.1080/08940886.2022.2066432
    [19]
    A. A. Sorokin et al., “An x-ray gas monitor for free-electron lasers,” J. Synchrotron Radiat. 26, 1092–1100 (2019).10.1107/s1600577519005174
    [20]
    H. P. Winter, H. Eder, and F. Aumayr, “Kinetic electron emission in the near-threshold region studied for different projectile charges,” Int. J. Mass Spectrom. 192, 407–413 (1999).10.1016/s1387-3806(99)00074-3
    [21]
    J. Krasa, M. Pfeifer, M. P. Stöckli, U. Lehnert, and D. Fry, “The effect of the first dynode’s geometry on the detection efficiency of a 119EM electron multiplier used as a highly charged ion detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 152, 397–402 (1999).10.1016/s0168-583x(99)00173-1
    [22]
    J. Chalupský, T. Burian, V. Hájková, L. Juha, T. Polcar, J. Gaudin, M. Nagasono, R. Sobierajski, M. Yabashi, and J. Krzywinski, “Fluence scan: An unexplored property of a laser beam,” Opt. Express 21, 26363 (2013).10.1364/oe.21.026363
    [23]
    V. Vozda et al., “Characterization of megahertz x-ray laser beams by multishot desorption imprints in PMMA,” Opt. Express 28, 25664 (2020).10.1364/oe.396755
    [24]
    Y. Okano, H. Kishimura, Y. Hironaka, K. G. Nakamura, and K. Kondo, “X-ray and fast ion generation from metal targets by femtosecond laser irradiation,” Appl. Surf. Sci. 197–198, 281–284 (2002).10.1016/s0169-4332(02)00383-5
    [25]
    S. Amoruso, C. Altucci, R. Bruzzese, C. de Lisio, N. Spinelli, R. Velotta, M. Vitiello, and X. Wang, “Study of the plasma plume generated during near IR femtosecond laser irradiation of silicon targets,” Appl. Phys. A 79, 1377–1380 (2004).10.1007/s00339-004-2785-9
    [26]
    P. A. VanRompay, M. Nantel, and P. P. Pronko, “Pulse-contrast effects on energy distributions of C1+ to C4+ ions for high-intensity 100-fs laser-ablation plasmas,” Appl. Surf. Sci. 127–129, 1023–1028 (1998).10.1016/s0169-4332(97)00784-8
    [27]
    A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: Non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).10.1007/s00339-004-2856-y
    [28]
    J. Krása, P. Parys, L. Velardi, A. Velyhan, L. Ryć, D. Delle Side, and V. Nassisi, “Time-of-flight spectra for mapping of charge density of ions produced by laser,” Laser Part. Beams 32, 15–20 (2014).10.1017/s0263034613000797
    [29]
    T. H. Tan, G. H. McCall, and A. H. Williams, “Determination of laser intensity and hot‐electron temperature from fastest ion velocity measurement on laser‐produced plasma,” Phys. Fluids 27, 296–301 (1984).10.1063/1.864482
    [30]
    L. M. Wickens, J. E. Allen, and P. T. Rumsby, “Ion emission from laser-produced plasmas with two electron temperatures,” Phys. Rev. Lett. 41, 243–246 (1978).10.1103/physrevlett.41.243
    [31]
    J. Krása, A. Velyhan, E. Krouský, L. Láska, K. Rohlena, K. Jungwirth, J. Ullschmied, A. Lorusso, L. Velardi, V. Nassisi, A. Czarnecka, L. Ryć, P. Parys, and J. Wołowski, “Emission characteristics and stability of laser ion sources,” Vacuum 85, 617–621 (2010).10.1016/j.vacuum.2010.08.021
    [32]
    [33]
    J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).10.1017/s0263034611000103
    [34]
    J. Krása, K. Jungwirth, E. Krouský, L. Láska, K. Rohlena, M. Pfeifer, J. Ullschmied, and A. Velyhan, “Temperature and centre-of-mass energy of ions emitted by laser-produced polyethylene plasma,” Plasma Phys. Controlled Fusion 49, 1649–1659 (2007).10.1088/0741-3335/49/10/004
    [35]
    M. Harbst, T. N. Hansen, C. Caleman, W. K. Fullagar, P. Jönsson, P. Sondhauss, O. Synnergren, and J. Larsson, “Studies of resolidification of non-thermally molten InSb using time-resolved x-ray diffraction,” Appl. Phys. A 81, 893–900 (2005).10.1007/s00339-005-3299-9
    [36]
    B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30 000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181 (1993), https://henke.lbl.gov/optical_constants/atten2.html.10.1006/adnd.1993.1013
    [37]
    B. I. Cho et al., “Observation of reverse saturable absorption of an x-ray laser,” Phys. Rev. Lett. 119, 075002 (2017).10.1103/physrevlett.119.075002
    [38]
    M. L. M. Rocco, F. C. Pontes, G. S. Faraudo, and G. G. B. de Souza, “Ionic desorption from PMMA irradiated with multi-bunch synchrotron radiation in the 21.21–300 eV photon energy range,” Polym. Degrad. Stab. 84, 327–330 (2004).10.1016/j.polymdegradstab.2004.01.012
    [39]
    T. E. Haynes, W. K. Chu, T. L. Aselage, and S. T. Picraux, “Initial decomposition of GaAs during rapid thermal annealing,” Appl. Phys. Lett. 49, 666–668 (1986).10.1063/1.97562
    [40]
    W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82, 4190–4192 (2003).10.1063/1.1580647
    [41]
    N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).10.1007/s00339-005-3242-0
    [42]
    R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).10.1103/physrevb.62.13167
    [43]
    R. Stoian, A. Rosenfeld, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Comment on ‘Coulomb explosion in femtosecond laser ablation of Si(111)’ [Appl. Phys. Lett. 82, 4190 (2003)],” Appl. Phys. Lett. 85, 694–695 (2004).10.1063/1.1771817
    [44]
    W. G. Roeterdink, M. Bonn, and A. W. Kleyn, “Response to “Comment on ‘Coulomb explosion in femtosecond laser ablation of Si(111)’” [Appl. Phys. Lett. 85, 694 (2004)],” Appl. Phys. Lett. 85, 696 (2004).10.1063/1.1771818
    [45]
    M. Borghesi, “Laser-driven ion acceleration: State of the art and emerging mechanisms,” Nucl. Instrum. Methods Phys. Res., Sect. A 740, 6–9 (2014).10.1016/j.nima.2013.11.098
    [46]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
    [47]
    Z. Chen, C. B. Curry, R. Zhang, F. Treffert, N. Stojanovic, S. Toleikis, R. Pan, M. Gauthier, E. Zapolnova, L. E. Seipp, A. Weinmann, M. Z. Mo, J. B. Kim, B. B. L. Witte, S. Bajt, S. Usenko, R. Soufli, T. Pardini, S. Hau-Riege, C. Burcklen, J. Schein, R. Redmer, Y. Y. Tsui, B. K. Ofori-Okai, and S. H. Glenzer, “Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids,” Nat. Commun. 12, 1638 (2021).10.1038/s41467-021-21756-6
    [48]
    R. Kelly and R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption,” Surf. Sci. 198, 263–276 (1988).10.1016/0039-6028(88)90483-9
    [49]
    A. Miotello and R. Kelly, “On the origin of the different velocity peaks of particles sputtered from surfaces by laser pulses or charged-particle beams,” Appl. Surf. Sci. 138–139, 44–51 (1999).10.1016/s0169-4332(98)00385-7
    [50]
    J. Krasa, “Gaussian energy distribution of fast ions emitted by laser-produced plasmas,” Appl. Surf. Sci. 272, 46–49 (2013).10.1016/j.apsusc.2012.09.045
    [51]
    S. Eliezer and H. Hora, “Double layers in laser-produced plasmas,” Phys. Rep. 172, 339–407 (1989).10.1016/0370-1573(89)90118-x
    [52]
    J. Krása, A. Velyhan, K. Jungwirth, E. Krouský, L. Láska, K. Rohlena, M. Pfeifer, and J. Ullschmied, “Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma,” Laser Part. Beams 27, 171–178 (2009).10.1017/s0263034609000238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (76) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return